點(diǎn)A(x0,-x1)與點(diǎn)B(x0,x2)的距離為

[  ]

A.|x1-x0|

B.|x2-x0|

C.|x2-x1|

D.|x1+x2|

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

(2013•安慶一模)閱讀下列解題過程,并解答后面的問題:
如圖1,在平面直角坐標(biāo)系xOy中,A(x1,y1),B(x2,y2),C為線段AB的中點(diǎn),求C點(diǎn)的坐標(biāo).
解:分布過A、C做x軸的平行線,過B、C做y軸的平行線,兩組平行線的交點(diǎn)如圖1所示.
設(shè)C(x0,y0),則D(x0,y1),E(x2,y1),F(xiàn)(x2,y0
由圖1可知:x0=
x2-x1
2
+x1
=
x1+x2
2

y0=
y2-y1
2
+x1
=
y1+y2
2

∴(
x1+x2
2
,
y1+y2
2

問題:(1)已知A(-1,4),B(3,-2),則線段AB的中點(diǎn)坐標(biāo)為
(1,1)
(1,1)

(2)平行四邊形ABCD中,點(diǎn)A、B、C的坐標(biāo)分別為(1,-4),(0,2),(5,6),求點(diǎn)D的坐標(biāo).
(3)如圖2,B(6,4)在函數(shù)y=
1
2
x+1的圖象上,A(5,2),C在x軸上,D在函數(shù)y=
1
2
x+1的圖象上,以A、B、C、D四個(gè)點(diǎn)為頂點(diǎn)構(gòu)成平行四邊形,直接寫出所有滿足條件的D點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:新課程學(xué)習(xí)手冊 數(shù)學(xué) 七年級(jí)下冊 配人教版 題型:044

仔細(xì)觀察下圖中兩個(gè)“貓”圖,回答下列問題.

(1)

分別寫出兩個(gè)“貓”圖眼睛的點(diǎn)及嘴角左端點(diǎn)的坐標(biāo).

(2)

若右“貓”圖中任意點(diǎn)P0(x0,y0)經(jīng)平移后得左“貓”圖中的對(duì)應(yīng)點(diǎn)P1(x1,y1),那么這兩個(gè)對(duì)應(yīng)點(diǎn)的橫坐標(biāo)之間以及縱坐標(biāo)之間有什么關(guān)系?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

新定義:若x0=ax02+bx0+c成立,則稱點(diǎn)(x0,x0)為拋物線y=ax2+bx+c (a≠0)上的不動(dòng)點(diǎn).設(shè)拋物線C的解析式為:y=ax2+(b+1)x+(b-1),(a≠0)
(1)拋物線C過點(diǎn)(0,-3);如果把拋物線C向左平移數(shù)學(xué)公式個(gè)單位后其頂點(diǎn)恰好在y軸上,求拋物線C的解析式及其上的不動(dòng)點(diǎn);
(2)對(duì)于任意實(shí)數(shù)b,實(shí)數(shù)a應(yīng)在什么范圍內(nèi),才能使拋物線C上總有兩個(gè)不同的不動(dòng)點(diǎn)?
(3)設(shè)a為整數(shù),且滿足a+b+1=0,若拋物線C與x軸兩交點(diǎn)的橫坐標(biāo)分別為x1,x2,是否存在整數(shù)k,使得 數(shù)學(xué)公式成立?若存在,求出k的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

點(diǎn)A(x0,-x1)與點(diǎn)B(x0,x2)的距離為


  1. A.
    |x1-x0|
  2. B.
    |x2-x0|
  3. C.
    |x2-x1|
  4. D.
    |x1+x2|

查看答案和解析>>

同步練習(xí)冊答案