如圖,已知△ABC、△DEF都是正三角形。
(1)寫出圖中與∠AGF必定相等的角.
(2)對于(1)中的幾個(gè)角,請你選擇一個(gè)角證明與∠AGF相等(本小題將按照證明難度的大小分別給分,難度越大給分越多).
(1)∠DGH、∠ADE、∠BEH;(2)證明見試題解析.
【解析】
試題分析:(1)易證∠AGF=∠F+∠FHG=60°+∠FHG,60°+∠FHG=∠C+∠EHC=∠BEH,得到∠AGF=∠BEH;由對頂角相等,得到∠DGH=∠AGF;在△ADG中,∠AGF=∠A+∠ADG=60°+∠ADG=∠EDG+∠ADG=∠ADE;
(2)由(1)的分析可得到證明過程.
試題解析:(1)∠DGH、∠ADE、∠BEH;
(2)證明∠AGF=∠DGH,∠AGF=∠ADE,∠AGF=∠BEH分別給1分,3分,5分.
①證明∠AGF=∠DGH,由對頂角相等,得到∠DGH=∠AGF;
②證明∠AGF=∠ADE,在△ADG中,∠AGF=∠A+∠ADG=60°+∠ADG=∠EDG+∠ADG=∠ADE,∴∠AGF=∠ADE;
③證明∠AGF=∠BEH,∵△ABC、△DEF均為正三角形,∴∠F=60°=∠C,∴∠AGF=∠F+∠GHF=∠C+ CHE=∠BEH.
考點(diǎn):1.等邊三角形的性質(zhì);2.三角形外角的性質(zhì).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com