【題目】如圖,△EBF為等腰直角三角形,點(diǎn)B為直角頂點(diǎn), 四邊形ABCD是正方形.
⑴ 求證:△ABE≌△CBF;
⑵ CF與AE有什么特殊的位置關(guān)系?請(qǐng)證明你的結(jié)論.
【答案】(1)見解析;(2)CF⊥AE,理由見解析
【解析】
(1)根據(jù)等腰直角三角形的性質(zhì)得出BE=BF,∠EBF=90°,再根據(jù)正方形的性質(zhì)得出AB=BC,∠ABC=90°,根據(jù)余角的性質(zhì)得到∠EBA=∠CBF,最后根據(jù)SAS證明結(jié)果;
(2)延長(zhǎng)CF,交AE于點(diǎn)G,根據(jù)補(bǔ)角的性質(zhì)得出∠AEB+∠BFG=180°,再根據(jù)四邊形內(nèi)角和得出∠EGF+∠EBF=180°,從而可得∠EGF=90°,即可得到結(jié)果.
解:(1)∵△EBF為等腰直角三角形,
∴BE=BF,∠EBF=90°,
則∠EBA+∠FBA=90°,
∵四邊形ABCD為正方形,
∴AB=BC,∠ABC=90°,則∠ABF+∠CBF=90°,
∴∠EBA=∠CBF,
又∵BE=BF,AB=BC,
∴△ABE≌△CBF(SAS);
(2)延長(zhǎng)CF,交AE于點(diǎn)G,
由(1)得:∠CFB=∠AEB,
∵∠CFB+∠BFG=180°,
∴∠AEB+∠BFG=180°,
∴∠EGF+∠EBF=180°,
∵∠EBF=90°,
∴∠EGF=90°,
∴CF⊥AE.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】時(shí)下娛樂綜藝節(jié)目風(fēng)靡全國(guó),隨機(jī)對(duì)九年級(jí)部分學(xué)生進(jìn)行了一次調(diào)查,對(duì)最喜歡《我是喜劇王》(記為A)、《王牌對(duì)王牌》(記為B)、《奔跑吧,兄弟》(記為C)、《歡樂喜劇人》(記為D)的同學(xué)進(jìn)行了統(tǒng)計(jì)(每位同學(xué)只選擇一個(gè)最喜歡的節(jié)目),繪制了以下不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中信息解答問題:
(1)求本次調(diào)查一共選取了多少名學(xué)生;
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)若九年級(jí)共有1900名學(xué)生,估計(jì)其中最喜歡《奔跑吧,兄弟》的學(xué)生大約是多少名.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,經(jīng)過原點(diǎn)的拋物線與直線交于,兩點(diǎn),其對(duì)稱軸是直線,拋物線與軸的另一個(gè)交點(diǎn)為,線段與軸交于點(diǎn).
(1)求拋物線的解析式,并寫出點(diǎn)的坐標(biāo);
(2)若點(diǎn)為線段上一點(diǎn),且,點(diǎn)為線段上不與端點(diǎn)重合的動(dòng)點(diǎn),連接,過點(diǎn)作直線的垂線交軸于點(diǎn),連接,探究在點(diǎn)運(yùn)動(dòng)過程中,線段,有何數(shù)量關(guān)系?并證明所探究的結(jié)論;
(3)設(shè)拋物線頂點(diǎn)為,求當(dāng)為何值時(shí),為等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,,,是邊上一點(diǎn),連接,是上一點(diǎn),且.
(1)如圖1,若,
①求證:平分∠;
②求的值;
(2)如圖2,連接,若,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線與鈾交于兩點(diǎn),與軸交于點(diǎn),頂點(diǎn)為.
(1)求拋物線的表達(dá)式;
(2)若將拋物線沿軸平移后得到拋物線,拋物線經(jīng)過點(diǎn)且與軸交于點(diǎn),頂點(diǎn)為.在拋物線上是否存在一點(diǎn)使?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:我們知道,四邊形的一條對(duì)角線把這個(gè)四邊形分成了兩個(gè)三角形,如果這兩個(gè)三角形相似(不全等),我們就把這條對(duì)角線叫做這個(gè)四邊形的“相似對(duì)角線”;
理解:
⑴ 如圖1,△ABC的三個(gè)頂點(diǎn)均在正方形網(wǎng)格中的格點(diǎn)上,若四邊形ABCD是以AC為“相似對(duì)角線”的四邊形,請(qǐng)用無刻度的直尺在網(wǎng)格中畫出點(diǎn)D(保留畫圖痕跡,找出3個(gè)即可);
⑵ 如圖2,在四邊形ABCD中,∠ABC=80°,∠ADC=140°,對(duì)角線BD平分∠ABC. 請(qǐng)問BD是四邊形ABCD的“相似對(duì)角線”嗎?請(qǐng)說明理由;
運(yùn)用:
⑶ 如圖3,已知FH是四邊形EFGH的“相似對(duì)角線”, ∠EFH=∠HFG=30°.連接EG,若△EFG的面積為,求FH 的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與軸交于兩點(diǎn),于軸交于點(diǎn),連接,已知.
(1)求拋物線的解析式;
(2)點(diǎn)是線段上一動(dòng)點(diǎn),過點(diǎn)P作軸,交拋物線于點(diǎn)D,求的長(zhǎng)的最大值;
(3)若點(diǎn)E是軸上一點(diǎn),以為頂點(diǎn)的三角形是腰三角形,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某軟件開發(fā)公司開發(fā)了A、B兩種軟件,每種軟件成本均為1400元,售價(jià)分別為2000元、1800元,這兩種軟件每天的銷售額共為112000元,總利潤(rùn)為28000元.
(1)該店每天銷售這兩種軟件共多少個(gè)?
(2)根據(jù)市場(chǎng)行情,公司擬對(duì)A種軟件降價(jià)銷售,同時(shí)提高B種軟件價(jià)格.此時(shí)發(fā)現(xiàn),A種軟件每降50元可多賣1件,B種軟件每提高50元就少賣1件.如果這兩種軟件每天銷售總件數(shù)不變,那么這兩種軟件一天的總利潤(rùn)最多是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC是⊙O的直徑,BC是⊙O的弦,點(diǎn)P是⊙O外一點(diǎn),連接PA,PB,AB,已知∠PBA=∠C.
(1)求證:PB是⊙O的切線;
(2)連接OP,若OP∥BC,且OP=8,⊙O的半徑為,求BC的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com