【題目】如圖,已知正方形ABCD,點E是BC邊的中點,DE與AC相交于點F,連接BF,下列結論:①S△ABF=S△ADF;②S△CDF=4S△CEF;③S△ADF=2S△CEF;④S△ADF=2S△CDF , 其中正確的是( )
A.①③
B.②③
C.①④
D.②④
【答案】C
【解析】解:∵四邊形ABCD是正方形, ∴AD∥CB,AD=BC=AB,∠FAD=∠FAB,
在△AFD和△AFB中,
,
∴△AFD≌△AFB,
∴S△ABF=S△ADF , 故①正確,
∵BE=EC= BC= AD,AD∥EC,
∴ = = = ,
∴S△CDF=2S△CEF , S△ADF=4S△CEF , S△ADF=2S△CDF ,
故②③錯誤④正確,
故選C.
【考點精析】解答此題的關鍵在于理解正方形的性質的相關知識,掌握正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,A、B、C三點在數(shù)軸上,A表示的數(shù)為-10,B表示的數(shù)為14,點C為線段AB的中點,動點P在數(shù)軸上,且點P表示的數(shù)為m.
(1)求點C表示的數(shù);
(2)點P從A點出發(fā),沿射線AB向終點B運動,設BP的中點為M,用含m的整式表示線段MC的長.
(3)在(2)的條件下,當m為何值時,AP-CM=2PC.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在抗洪搶險中,解放軍戰(zhàn)士的沖鋒舟加滿油沿東西方向的河流搶救災民,早晨從地出發(fā),晚上到達地,約定向東為正方向,當天的航行路程記錄如下(單位:千米):,,,,,,,.
(1)請你幫忙確定地位于地的什么方向,距離地多少千米?
(2)若沖鋒舟每千米耗油升,郵箱容量為升,求沖鋒舟當天救災過程中至少還需補充多少升油?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某工程,乙工程隊單獨先做10天后,再由甲、乙兩個工程隊合作20天就能完成全部工程,已知甲工程隊單獨完成此工程所需天數(shù)是乙工程隊單獨完成此工程所需天數(shù)的 ,
(1)求:甲、乙工程隊單獨做完成此工程各需多少天?
(2)甲工程隊每天的費用為0.67萬元,乙工程隊每天的費用為0.33萬元,該工程的預算費用為20萬元,若甲、乙工程隊一起合作完成該工程,請問工程費用是否夠用,若不夠用應追加多少萬元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在數(shù)軸上點A表示的有理數(shù)為,點B表示的有理數(shù)為6,點P從點A出發(fā)以每秒2個單位長度的速度由運動,同時,點Q從點B出發(fā)以每秒1個單位長度的速度由運動,當點Q到達點A時P、Q兩點停止運動,設運動時間為單位:秒.
(1)求時,求點P和點Q表示的有理數(shù);
(2)求點P與點Q第一次重合時的t值;
(3)當t的值為多少時,點P表示的有理數(shù)與點Q表示的有理數(shù)距離是3個單位長度?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解某城鎮(zhèn)中學學做家務的時間,一綜合實踐活動小組對該班50名學生進行了調查,根據(jù)調查所得的數(shù)據(jù)制成如下圖的頻數(shù)分布直方圖.
(1)補全該圖,并寫出相應的頻數(shù);
(2)求第1組的頻率;
(3)求該班學生每周做家務時間的平均數(shù);
(4)你的做家務時間在哪一組內?請用一句話談談你的感受.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一家住房的地面結構如圖所示,請根據(jù)圖中的數(shù)據(jù),解答下列問題:
(1)用含x的代數(shù)式表示地面總面積;
(2)已知客廳面積比衛(wèi)生間面積多這家房子的主人打算把廚房和衛(wèi)生間都鋪上地磚,已知鋪地磚的平均費用為60元,求鋪地磚的總費用為多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在“3·15”消費者權益日的活動中,對甲、乙兩家商場售后服務的滿意度進行了抽查.如圖反映了被抽查用戶對兩家商場售后服務的滿意程度(以下稱:用戶滿意度),分為很不滿意、不滿意、較滿意、很滿意四個等級,并依次記為1分、2分、3分、4分.
(1)分別求出甲、乙兩商場的用戶滿意度分數(shù)的平均值(計算結果精確到0.01).
(2)請你根據(jù)所學的統(tǒng)計知識,判斷哪家商場的用戶滿意度較高,并簡要說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中, △ABC如圖(每個小正方形的邊長均為1).
(1)請畫出△ABC沿x軸向右平移4個單位長度,再沿y軸向上平移2個單位長度后的△A′B′C′(其中A′、B′、C′分別是A、B、C的對應點,不寫畫法)
(2)直接寫出A′、B′、C′三點的坐標:A′(____,_____); B′(____,_____);C′(____,_____).
(3)求△A′B′C′的面積.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com