精英家教網(wǎng)如圖,⊙O的半徑OA=6,以A為圓心,OA為半徑的弧交⊙O于B、C點(diǎn),則BC=( 。
A、6
3
B、6
2
C、3
3
D、3
2
分析:根據(jù)垂徑定理先求BC一半的長(zhǎng),再求BC的長(zhǎng).
解答:精英家教網(wǎng)解:設(shè)OA與BC相交于D點(diǎn).
∵AB=OA=OB=6
∴△OAB是等邊三角形.
又根據(jù)垂徑定理可得,OA平分BC,
利用勾股定理可得BD=
62-32
=3
3

所以BC=6
3

故選A.
點(diǎn)評(píng):本題的關(guān)鍵是利用垂徑定理和勾股定理.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,⊙O的半徑OA=5cm,若弦AB=8cm,P為AB上一動(dòng)點(diǎn),則點(diǎn)P到圓心O的最短距離為
 
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,⊙O的半徑OA等于5,半徑OC與弦AB垂直,垂足為D,若OD=3,則弦AB的長(zhǎng)為( 。
A、10B、8C、6D、4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,⊙O的半徑OA、OB分別交弦CD于點(diǎn)E、F,且CE=DF.請(qǐng)說(shuō)明AE=BF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,⊙O的半徑OA=3,P是⊙O外一點(diǎn),OP交⊙O于點(diǎn)B,PB=2,PA=4,
(1)求證:PA是⊙O的切線;
(2)若AD⊥OP于點(diǎn)D,求sin∠DAO的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案