【題目】為了鼓勵市民節(jié)約用水,某市居民生活用水按階梯式水價計費.下表是該市民一戶一表"生活用水階梯式計費價格表的部分信息:
自來水銷售價格 | 污水處理價格 | |
每戶每月用水量 | 單價:元/噸 | 單價:元/噸 |
噸及以下 | ||
超過噸但不超過噸的部分 | ||
超過噸的部分 |
(說明:每戶生產(chǎn)的污水量等于該戶自來水用量;②水費=自來水費用+污水處理費)
已知小王家2018年7月用水噸,交水費元.8月份用水噸,交水費元.
(1)求的值;
(2)如果小王家9月份上交水費元,則小王家這個月用水多少噸?
(3)小王家10月份忘記了去交水費,當他11月去交水費時發(fā)現(xiàn)兩個月一共用水50噸,其中10月份用水超過噸,一共交水費元,其中包含元滯納金,求小王家11月份用水多少噸? (滯納金:因未能按期繳納水費,逾期要繳納的“罰款金額”)
科目:初中數(shù)學(xué) 來源: 題型:
【題目】單位組織員工自駕游,并打算在一家租車公司租用同一品牌同款的5座或7座越野車組成一個車隊.該租車公司同品牌同款的7座越野車的日租金比5座的多300元.已知該單位參加自駕游的員工共有40人,其中10人可以擔(dān)任司機,但這10人中至少需要留出3人做為機動司機,以備輪換替代.
(1)有人建議租8輛5座的越野車,剛好可以載40人.他的建議合理嗎?請說明理由;
(2)請為該單位設(shè)計一種租車方案,使車隊租車的日租金最少,并說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標系中,點A在x軸上,且A(4,0),點B在y軸上,且B(0,4).
(1)求線段AB的長;
(2)若點E在線段AB上,OE⊥OF,且OE=OF,求AE+AF的值;
(3)在(2)的條件下,過O作OM⊥EF,交AB于M,試確定線段BE、EM、AM之間的數(shù)量關(guān)系?并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,四邊形ABCD是菱形,AD=5,過點D作AB的垂線DH,垂足為H,交對角線AC于M,連接BM,且AH=3.
(1)求證:DM=BM;
(2)求MH的長;
(3)如圖2,動點P從點A出發(fā),沿折線ABC方向以2個單位/秒的速度向終點C勻速運動,設(shè)△PMB的面積為S(S≠0),點P的運動時間為t秒,求S與t之間的函數(shù)關(guān)系式;
(4)在(3)的條件下,當點P在邊AB上運動時是否存在這樣的 t值,使∠MPB與∠BCD互為余角,若存在,則求出t值,若不存,在請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點是直線上的一點,,平分.
(1)如圖1,若,求的度數(shù);
(2)如圖1中,若,直接寫出的度數(shù)(用含的式子表示);
(3)將圖1中的繞頂點逆時針旋轉(zhuǎn)至圖2的位置,其他條件不變,那么(2)中的求的結(jié)論是否還成立?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象交于A(﹣2,1),B(1,n)兩點.
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)根據(jù)圖象寫出一次函數(shù)的值大于反比例函數(shù)的值的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在矩形ABCD中,,,點E從點B出發(fā),沿BC邊運動到點C,連結(jié)DE,過點E作DE的垂線交AB于點F.
求證:;
求BF的最大值;
如圖2,在點E的運動過程中,以EF為邊,在EF上方作等邊,求邊EG的中點H所經(jīng)過的路徑長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c經(jīng)過△ABC的三個頂點,與y軸相交于(0, ),點A坐標為(-1,2),點B是點A關(guān)于y軸的對稱點,點C在x軸的正半軸上.
(1)求該拋物線的函數(shù)解析式;
(2)點F為線段AC上一動點,過點F作FE⊥x軸,FG⊥y軸,垂足分別為點E,G,當四邊形OEFG為正方形時,求出點F的坐標;
(3)將(2)中的正方形OEFG沿OC向右平移,記平移中的正方形OEFG為正方形DEFG,當點E和點C重合時停止運動,設(shè)平移的距離為t,正方形的邊EF與AC交于點M,DG所在的直線與AC交于點N,連接DM,是否存在這樣的t,使△DMN是等腰三角形?若存在,求t的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com