【題目】如圖,在中,,點D是BC邊上的一點,,,.
(1)求AC和AB的長;
(2)求的值.
【答案】(1);(2)
【解析】
試題(1)在Rt△ACD中,利用,CD=6求出AD的長,再求出AC的長.再在Rt△ABC中,利用==求出BC的長,再求出AB的長;(2)過點D作DH⊥AB于點H,利用S△ABD=AB·DH=BD·AC,其中AB、BD、AC都可知,則可求出DH,再在Rt△ADH中利用正弦三角形函數(shù)定義求解.
解:(1)∵在Rt△ACD中,cos∠ADC==,CD=6,
∴AD=10,
∴在Rt△ACD中,AC==8.
又∵在Rt△ABC中,==,
∴BC=12,
∴AB==4.
(2)過點D作DH⊥AB于點H,
∴S△ABD=AB·DH=BD·AC,
其中AB=4,BD=BC-CD=6,AC=8,
∴DH==,
∴在Rt△ADH中,sin∠BAD==.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,D是BC邊上一點,以DB為直徑的⊙O經(jīng)過AB的中點E,交AD的延長線于點F,連接EF.
(1)求證:∠1=∠F;
(2)若sinB=,EF=2,求CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC在網(wǎng)格中的位置如圖所示(每個小正方形邊長為1),AD⊥BC于D,下列選項中,錯誤的是( )
A. sinα=cosα B. tanC=2 C. sinβ= D. tanα=1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形OABC的頂點A,C分別在x軸和y軸上,點B的坐標(biāo)為(2,3),雙曲線y= (x>0)的圖象經(jīng)過BC上的點D與AB交于點E,連接DE,若E是AB的中點.
(1)求點D的坐標(biāo);
(2)點F是OC邊上一點,若△FBC和△DEB相似,求點F的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①、②、③、○n、…、M、N分別是⊙O的內(nèi)接正三角形ABC、正方形ABCD、正五邊形ABCDE、…、正n邊形ABCDE…的邊AB、BC上的點,且BM=CN,連接OM、ON.
(1)求圖①中∠MON的度數(shù);
(2)圖②中∠MON的度數(shù)是_________,圖③中∠MON的度數(shù)是___________;
(3)試探究∠MON的度數(shù)與正n邊形邊數(shù)n的關(guān)系(直接寫出答案).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四邊形ABCD中,AD//BC,∠A=90°,AB=12,BC=21,AD=16.動點P從點B出發(fā),沿射線BC的方向以每秒2個單位長的速度運動,動點Q同時從點A出發(fā),在線段AD上以每秒1個單位長的速度向點D運動,當(dāng)其中一個動點到達(dá)端點時另一個動點也隨之停止運動.設(shè)運動的時間為t(秒).
(1)設(shè)△DPQ的面積為S,求S與t之間的函數(shù)關(guān)系式;
(2)分別求出出當(dāng)t為何值時,①PD=PQ,②DQ=PQ?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,盱眙縣某校有一塊矩形空地,在空地上的點A、B、C處種有三棵樹,學(xué)校想在矩形的空地上建一個圓形花壇,使這三棵樹幫在花壇的邊上.
(1)請你幫學(xué)校把花壇的位置畫出來(用直尺和圓規(guī)作圖,保留作圖痕跡):
(2)若AB=12m,AC=5m,∠BAC=90,求花壇的面積(結(jié)果保留).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com