【題目】某牛奶廠在一條南北走向的大街上設(shè)有O,A,BC四家特約經(jīng)銷店.A店位于O店的南面3千米處;B店位于O店的北面1千米處,C店在O店的北面2千米處.

(1)請(qǐng)以O為原點(diǎn),向北的方向?yàn)檎较颍?/span>1個(gè)單位長度表示1千米,畫一條數(shù)軸,你能在數(shù)軸上分別表示出OA,B,C的位置嗎?

(2)牛奶廠的送貨車從O店出發(fā),要把一車牛奶分別送到A,BC三家經(jīng)銷店,那么送貨車走的最短路程是多少千米?

【答案】(1)能,圖見解析;(2)送貨車走的最短路程是7千米

【解析】

(1)根據(jù)題意以O為原點(diǎn),向北的方向?yàn)檎较?1個(gè)單位長度表示1千米可畫出數(shù)軸, 再根據(jù)A店位于O店的南面3千米處,可確定A位于O點(diǎn)左邊距離原點(diǎn)O 3個(gè)單位,即表示-3,B店位于O店的北面1千米處,可確定點(diǎn)B位于點(diǎn)O右邊距離原點(diǎn)1個(gè)單位,即表示為1,C店在O店的北面2千米處, 可確定點(diǎn)B位于點(diǎn)O右邊距離原點(diǎn)2個(gè)單位,即表示為2,

(2) 牛奶廠的送貨車從O店出發(fā),要把一車牛奶分別送到A,B,C三家經(jīng)銷店, 送貨車走的最短路程是從點(diǎn)OB再到點(diǎn)C再到點(diǎn)A,2-(-3)+2,然后計(jì)算即可求解.

解:(1)能,如圖所示:

(2)依題意得最短路程為2-(-3)+2=7(千米).

答:送貨車走的最短路程是7千米.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知OE是∠AOC的角平分線,OD是∠BOC的角平分線.

(1)若∠AOC=120°,∠BOC=30°,求∠DOE的度數(shù);

(2)若∠AOB=90°,∠BOC=α,求∠DOE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把所有正偶數(shù)從小到大排列,并按如下規(guī)律分組:

第一組:2,4;

第二組:6,8,10,12;

第三組:14,16,18,20,22,24

第四組:26,28,30,32,34,36,38,40

……

則現(xiàn)有等式Am=(i,j)表示正偶數(shù)m是第i組第j個(gè)數(shù)(從左到右數(shù)),如A10=(2,3),則A2018=( )

A. (31,63) B. (32,17) C. (33,16) D. (34,2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,C=90°AC=BC=6cm,點(diǎn)P從點(diǎn)A出發(fā),沿AB方向以每秒cm的速度向終點(diǎn)B運(yùn)動(dòng);同時(shí),動(dòng)點(diǎn)Q從點(diǎn)B出發(fā)沿BC方向以每秒1cm的速度向終點(diǎn)C運(yùn)動(dòng),將PQC沿BC翻折,點(diǎn)P的對(duì)應(yīng)點(diǎn)為點(diǎn)P′.設(shè)點(diǎn)Q運(yùn)動(dòng)的時(shí)間為t秒,若四邊形QPCP′為菱形,則t的值為( )

A. B. 2 C. 2 D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了促進(jìn)節(jié)能減排,倡導(dǎo)節(jié)約用電,某市將實(shí)行居民生活用電階梯電價(jià)方案,圖中折線反映了每戶每月用電電費(fèi)y(元)與用電量x(度)間的函數(shù)關(guān)系式.
(1)根據(jù)圖象,階梯電價(jià)方案分為三個(gè)檔次,填寫下表:

檔次

第一檔

第二檔

第三檔

每月用電量x(度)

0<x≤140


(2)小明家某月用電120度,需交電費(fèi)元;
(3)求第二檔每月電費(fèi)y(元)與用電量x(度)之間的函數(shù)關(guān)系式;
(4)在每月用電量超過230度時(shí),每多用1度電要比第二檔多付電費(fèi)m元,小剛家某月用電290度,交電費(fèi)153元,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用簡便方法計(jì)算:

(1)(-3)+(+8)-(-5);

(2)(-)+(+)+(+)+(-1);

(3)(-3)-(-)+(-0.5)+3;

(4)(+3)+(-2)-(-5)-(+);

(5)(-0.25)+(-3)-|-1|-(-3);

(6)(+)+(+17)+(-1)-(+7)-(-2)+(-).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠ABC=30°,將△DCB繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°后,點(diǎn)D的對(duì)應(yīng)點(diǎn)恰好與點(diǎn)A重合,得到△ACE,若AB=3,BC=4,則BD=(提示:可連接BE)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如下圖, ABCD,點(diǎn)E,F分別為AB,CD上一點(diǎn).

(1) 在AB,CD之間有一點(diǎn)M(點(diǎn)M不在線段EF上),連接ME,MF,試探究∠AEM,∠EMF,∠MFC之間有怎樣的數(shù)量關(guān)系. 請(qǐng)補(bǔ)全圖形,并在圖形下面寫出相應(yīng)的數(shù)量關(guān)系,選其中一個(gè)進(jìn)行證明.

(2)如下圖,在AB,CD之間有兩點(diǎn)M,N,連接ME,MNNF,請(qǐng)選擇一個(gè)圖形寫出∠AEM,∠EMN,∠MNF,∠NFC 存在的數(shù)量關(guān)系(不需證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】自學(xué):如圖1,△ABC中,D是BC邊上一點(diǎn),則△ABD與△ADC有一個(gè)相同的高,它們的面積之比等于相應(yīng)的底之比,記為 =
(△ABD,△ADC的面積分別用記號(hào)SABD , SADC表示)

(1)心得:如圖1,若BD= DC,則SABD:SADC=
(2)成長:如圖2,△ABC中,M,N分別是AB,AC邊上一點(diǎn),且有AM:MB=2:1,AN:NC=1:1,則△AMN與△ABC的面積比為
(3)巔峰:如圖3,△ABC中,P,Q,R分別是BC,CA,AB邊上的點(diǎn),且AP,BQ,CR相交于點(diǎn)O,現(xiàn)已知△BPO,△PCO,△COQ,△AOR的面積依次為40,30,35,84,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案