精英家教網 > 初中數學 > 題目詳情

對角線為1的正方形的邊長是________.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

電焊工想利用一塊邊長為a的正方形鋼板ABCD做成一個扇形,于是設計了以下三種方案:
方案一:如圖1,直接從鋼板上割下扇形ABC.
方案二:如圖2,先在鋼板上沿對角線割下兩個扇形,再焊接成一個大扇形(如圖3).
方案三:如圖3,先把鋼板分成兩個相同的小矩形,并在每個小矩形里割下兩個小扇形,然后將四個小扇形按與圖3類似的方法焊接成一個大扇形.
精英家教網
試回答下列問題:
(1)容易得出圖1、圖3中所得扇形的圓心角均為90°,那么按方案三所焊接成的大扇形的圓心角也為90°嗎?為什么?
(2)容易得出圖1中扇形與圖3中所得大扇形的面積相等,那么按方案三所焊成的大扇形的面積也與方案二所焊接成的大扇形的面積相等嗎?若不相等,面積是增大還是減。繛槭裁?
(3)若將正方形鋼板按類似圖4的方式割成n個相同的小矩形,并在每個小矩形里割下兩個小扇形,然后將這2n個小扇形按類似方案三的方式焊接成一個大扇形,則當n逐漸增大時,所焊接成的大扇形的面積如何變化?

查看答案和解析>>

科目:初中數學 來源: 題型:

操作:將一把三角尺放在邊長為1的正方形ABCD上,并使它的直角頂點P在對角線AC上滑動,直角的一邊始終經過點B,另一邊與射線DC相交于點Q.
探究:設A、P兩點間的距離為x.
(1)點Q在CD上時,線段PQ與線段PB之間有怎樣的大小關系?試證明你觀察得到的結論(如圖1);
(2)點Q邊CD上時,設四邊形PBCQ的面積為y,求y與x之間的函數解析式,并寫出函數的定義域(如圖2);
(3)點P在線段AC上滑動時,△PCQ是否可能成為等腰三角形?如果可能,指出所有能使△PCQ成為等腰三角形的點Q的位置,并求出相應的x的值;如果不可能,試說明理由(如圖3).(圖4、圖5、圖6的形狀、大小相同,圖4供操作、實驗用,圖5和圖6備用).
精英家教網

查看答案和解析>>

科目:初中數學 來源: 題型:

(1)如圖1,小明想剪一塊面積為25cm2的正方形紙板,你能幫他求出正方形紙板的邊長嗎?
精英家教網
(2)若小明想將兩塊邊長都為3cm的正方形紙板沿對角線剪開,拼成如圖2所示的一個大正方形,你能幫他求出這個大正方形的面積嗎?它的邊長是整數嗎?若不是整數,那么請你估計這個邊長的值在哪兩個整數之間.精英家教網

查看答案和解析>>

科目:初中數學 來源: 題型:閱讀理解

請閱讀下列材料:
問題:現有5個邊長為1的正方形,排列形式如圖1,請把它們分割后拼接成一個新的正方形.
要求:畫出分割線并在正方形網格圖(圖中每個小正方形的邊長均為1)中用實線畫出拼接成的新正方形.
小東同學的做法是:設新正方形的邊長為x(x>0).依題意,割補前后圖形面積相等,有x2=5,解得x=
5
.由此可知新正方形的邊長等于兩個小正方形組成的矩形對角線的長.于是,畫出如圖2所示的分割線,拼出如圖3所示的新正方形.
精英家教網
請你參考小東同學的做法,解決如下問題:
(1)如圖4,是由邊長為1的5個小正方形組成,請你通過分割,把它拼成一個正方形(在圖4上畫出分割線,在圖4的右側畫出拼成的正方形簡圖);
(2)如圖5,是由邊長分別為a和b的兩個正方形組成,請你通過分割,把它拼成一個正方形(在圖5上畫出分割線,在圖5的右側畫出拼成的正方形簡圖).
精英家教網

查看答案和解析>>

科目:初中數學 來源:學習周報 數學 華師大八年級版 2009-2010學年 第2期 總第158期 華師大版 題型:044

請閱讀下面材料:

問題:現有5個邊長為1的正方形,排列形式如圖1所示,請把它們分割后拼接成一個新的正方形.要求:畫出分割線,并在正方形網格圖(圖中每個小正方形的邊長均為1)中用實線畫出拼接成的新正方形

小東同學的做法是:設新正方形的邊長為x(x>0).依題意,割補前后圖形的面積相等,有x2=5.解得x=.由此可知,新正方形的邊長等于兩個小正方形組成的矩形的對角線的長.于是,畫出如圖2所示的分割線,拼出如圖3所示的新正方形

請你參考小東同學的做法,解決如下問題:

現有10個邊長為1的正方形,排列形式如圖4所示,請把它們分割后拼接成一個新的正方形.要求:在圖4中畫出分割線,并在圖5的正方形網格圖(圖中每個小正方形的邊長均為1)中用實線畫出拼接成的新正方形

查看答案和解析>>

同步練習冊答案