(2010•煙臺)如圖,△ABC內(nèi)接于⊙O,D為線段AB的中點(diǎn),延長OD交⊙O于點(diǎn)E,連接AE,BE,則下列五個結(jié)論①AB⊥DE,②AE=BE,③OD=DE,④∠AEO=∠C,⑤弧AE=弧AEB,正確結(jié)論的個數(shù)是( )

A.2
B.3
C.4
D.5
【答案】分析:已知OE是⊙O的半徑,D是弦AB的中點(diǎn),可根據(jù)垂徑定理的推論來判斷所給出的結(jié)論是否正確.
解答:解:∵OE是⊙O的半徑,且D是AB的中點(diǎn),
∴OE⊥AB,弧AE=弧BE=弧AEB;(故①⑤正確)
∴AE=BE;(故②正確)
由于沒有條件能夠證明③④一定成立,所以一定正確的結(jié)論是①②⑤;
故選B.
點(diǎn)評:此題主要考查了圓心角、弧、弦的關(guān)系及垂徑定理的推論;
垂徑定理的推論:平分弦(不是直徑)的直徑垂直于這條弦,并且平分這條弦所對的兩段弧.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《四邊形》(07)(解析版) 題型:解答題

(2010•煙臺)如圖,已知拋物線y=x2+bx-3a過點(diǎn)A(1,0),B(0,-3),與x軸交于另一點(diǎn)C.
(1)求拋物線的解析式;
(2)若在第三象限的拋物線上存在點(diǎn)P,使△PBC為以點(diǎn)B為直角頂點(diǎn)的直角三角形,求點(diǎn)P的坐標(biāo);
(3)在(2)的條件下,在拋物線上是否存在一點(diǎn)Q,使以P,Q,B,C為頂點(diǎn)的四邊形為直角梯形?若存在,請求出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2010•煙臺)如圖,已知拋物線y=x2+bx-3a過點(diǎn)A(1,0),B(0,-3),與x軸交于另一點(diǎn)C.
(1)求拋物線的解析式;
(2)若在第三象限的拋物線上存在點(diǎn)P,使△PBC為以點(diǎn)B為直角頂點(diǎn)的直角三角形,求點(diǎn)P的坐標(biāo);
(3)在(2)的條件下,在拋物線上是否存在一點(diǎn)Q,使以P,Q,B,C為頂點(diǎn)的四邊形為直角梯形?若存在,請求出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年山東省煙臺市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•煙臺)如圖,已知拋物線y=x2+bx-3a過點(diǎn)A(1,0),B(0,-3),與x軸交于另一點(diǎn)C.
(1)求拋物線的解析式;
(2)若在第三象限的拋物線上存在點(diǎn)P,使△PBC為以點(diǎn)B為直角頂點(diǎn)的直角三角形,求點(diǎn)P的坐標(biāo);
(3)在(2)的條件下,在拋物線上是否存在一點(diǎn)Q,使以P,Q,B,C為頂點(diǎn)的四邊形為直角梯形?若存在,請求出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《圖形的平移》(02)(解析版) 題型:解答題

(2010•煙臺)如圖,在平面直角坐標(biāo)系中,△ABC的三個頂點(diǎn)的坐標(biāo)分別為A(0,1),B(-1,1),C(-1,3).
(1)畫出△ABC關(guān)于x軸對稱的△A1B1C1,并寫出點(diǎn)C1的坐標(biāo);
(2)畫出△ABC繞原點(diǎn)O順時(shí)針方向旋轉(zhuǎn)90°后得到的△A2B2C2,并寫出點(diǎn)C2的坐標(biāo);
(3)將△A2B2C2平移得到△A3B3C3,使點(diǎn)A2的對應(yīng)點(diǎn)是A3,點(diǎn)B2的對應(yīng)點(diǎn)是B3,點(diǎn)C2的對應(yīng)點(diǎn)是C3(4,-1),在坐標(biāo)系中畫出△A3B3C3,并寫出點(diǎn)A3,B3的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年山東省煙臺市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2010•煙臺)如圖,△ABC中,點(diǎn)D在線段BC上,且△ABC∽△DBA,則下列結(jié)論一定正確的是( )

A.AB2=BC•BD
B.AB2=AC•BD
C.AB•AD=BD•BC
D.AB•AD=AD•CD

查看答案和解析>>

同步練習(xí)冊答案