用換元法解分式方程x2+-2(x+)-1=0時,如果設y=x+,那么原方程可化為關于y的一元二次方程的一般形式是   
【答案】分析:本題考查用換元法整理分式方程的能力,關鍵是找到x2+與y=x+之間的聯(lián)系.
解答:解:因為x2+=(x+2-2,所以原方程可整理為y2-2-2y-1=0,進一步整理得:y2-2y-3=0.
點評:用換元法解分式方程可使方程化繁為簡,是一種常用的方法,要注意掌握能用換元法解的分式方程的特點.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

用換元法解分式方程x2+
1
x2
-2(x+
1
x
)-1=0時,如果設y=x+
1
x
,那么原方程可化為關于y的一元二次方程的一般形式是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

用換元法解分式方程
2x-1
x
-
x
2x-1
=2時,如果設
2x-1
x
=y,并將原方程化為關于y的整式方程,那么這個整式方程是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

用換元法解分式方程
1-x
x2+2
+
x2+2
2(1-x)
=
3
2
,設
1-x
x2+2
=y
,則原分式方程換元整理后的整式方程為(  )
A、y+
1
y
=
3
2
B、y2+y=
3
2
C、2y2-3y+1=0
D、2y2-3y+2=0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

用換元法解分式方程:
x2-2
x
+
x
x2-2
=2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

用換元法解分式方程x2-3x-1=
12x2-3x
時,如果設y=x2-3x,那么換元后化簡所得的整式方程是
 

查看答案和解析>>

同步練習冊答案