【題目】如圖,我們把一個半圓與拋物線的一部分圍成的封閉圖形稱為“果圓”.已知點A、B、C、D分別是“果圓”與坐標(biāo)軸的交點,拋物線的解析式為y=x2﹣6x﹣16,AB為半圓的直徑,則這個“果圓”被y軸截得的線段CD的長為_____.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】裝潢公司要給邊長為6米的正方形墻面ABCD進(jìn)行裝潢,設(shè)計圖案如圖所示(四周是四個全等的矩形,用材料甲進(jìn)行裝潢;中心區(qū)是正方形MNPQ,用材料乙進(jìn)行裝潢).
兩種裝潢材料的成本如下表:
材料 | 甲 | 乙 |
價格(元/米2) | 50 | 40 |
設(shè)矩形的較短邊AH的長為x米,裝潢材料的總費用為y元.
(1)MQ的長為 米(用含x的代數(shù)式表示);
(2)求y關(guān)于x的函數(shù)解析式;
(3)當(dāng)中心區(qū)的邊長不小于2米時,預(yù)備資金1760元購買材料一定夠用嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1所示矩形中,,,與滿足的反比例函數(shù)關(guān)系如圖2所示,等腰直角三角形的斜邊過點,點,分別在,上,為的中點,則下列結(jié)論正確的是( )
A.當(dāng)時,
B.當(dāng)時,
C.當(dāng)增大時,的值增大
D.當(dāng)增大時,的值不變
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線與x軸、y軸分別交于點A,B,與雙曲線分別交于點C,D,且點C的坐標(biāo)為.
(1)分別求出直線、雙曲線的函數(shù)表達(dá)式.
(2)求出點D的坐標(biāo).
(3)利用圖象直接寫出:當(dāng)x在什么范圍內(nèi)取值時?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面內(nèi)容,并按要求解決問題: 問題:“在平面內(nèi),已知分別有個點,個點,個點,5 個點,…,n 個點,其中任意三 個點都不在同一條直線上.經(jīng)過每兩點畫一條直線,它們可以分別畫多少條直線? ” 探究:為了解決這個問題,希望小組的同學(xué)們設(shè)計了如下表格進(jìn)行探究:(為了方便研 究問題,圖中每條線段表示過線段兩端點的一條直線)
請解答下列問題:
(1)請幫助希望小組歸納,并直接寫出結(jié)論:當(dāng)平面內(nèi)有個點時,直線條數(shù)為 ;
(2)若某同學(xué)按照本題中的方法,共畫了條直線,求該平面內(nèi)有多少個已知點.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,線段AB=a,點P是AB中垂線MN上的一動點,過點P作直線CD∥AB.若在直線CD上存在點Q使得△ABQ為等腰三角形,且滿足條件的點Q有且只有3個,則PM的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線l為正比例函數(shù)y=x的圖象,點A1的坐標(biāo)為(1,0),過點A1作x軸的垂線交直線l于點D1,以A1D1為邊作正方形A1B1C1D1;過點C1作直線l的垂線,垂足為A2,交x軸于點B2,以A2B2為邊作正方形A2B2C2D2;過點C2作x軸的垂線,垂足為A3,交直線l于點A3,以A3D3為邊作正方形A3B3C3D3,…,按此規(guī)律操作下所得到的正方形A2019B2019C2019D2019的面積是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點O(0,0),點A(1,0).已知拋物線y=x2+mx﹣2m(m是常數(shù)),頂點為P.
(Ⅰ)當(dāng)拋物線經(jīng)過點A時,求頂點P的坐標(biāo);
(Ⅱ)若點P在x軸下方,當(dāng)∠AOP=45°時,若函數(shù)值y>0,求對應(yīng)自變量x的取值范圍;
(Ⅲ)無論m取何值,該拋物線都經(jīng)過定點H.當(dāng)∠AHP=45°時,求拋物線的解析式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com