【題目】四邊形ABCD內接于⊙O,點E為AD上一點,連接AC,CB,∠B=∠AEC.
(1)如圖1,求證:CE=CD;
(2)如圖2,若∠B+∠CAE=120°,∠ACD=2∠BAC,求∠BAD的度數(shù);
(3)如圖3,在(2)的條件下,延長CE交⊙O于點G,若tan∠BAC= ,EG=2,求AE的長.
【答案】
(1)解:證明:∵四邊形ABCD內接于⊙O
∴∠B+∠D=180°,
∵∠B=∠AEC,
∴∠AEC+∠D=180°,
∵∠AEC+∠CED=180°,
∴∠D=∠CED,
∴CE=CD.
(2)解:作CH⊥DE于H.
設∠ECH=α,由(1)CE=CD,
∴∠ECD=2α,
∵∠B=∠AEC,∠B+∠CAE=120°,
∴∠CAE+∠AEC=120°
∴∠ACE=180°﹣∠AEC﹣∠ACE=60°,
∴∠CAE=90°﹣∠ACH=90°﹣(60°+α)=30°﹣α,
∠ACD=∠ACH+∠HCD=60°+2α,
∵∠ACD=2∠BAC,
∴∠BAC=30°+α,
∴∠BAD=∠BAC+∠CAE=30°+α+30°﹣α=60°.
(3)解:連接AG,作GN⊥AC,AM⊥EG
∵∠CED=∠AEG,∠CDE=∠AGE,∠CED=∠CDE,
∴∠AEG=∠AGE,
∴AE=AG,
∴EM=MG= EG=1,
∴∠EAG=∠ECD=2α,
∴∠CAG=∠CAD+∠DAG=30°﹣α+2α=∠BAC,
∵tan∠BAC= ,
∴設NG=5 m,可得AN=11m,AG= =14m,
∵∠ACG=60°,
∴CN=5m,AM=8 m,MG= =2m=1,
∴m= ,
∴CE=CD=CG﹣EG=10m﹣2=3
∴AE= = =7.
【解析】(1)根據圓內接四邊形對角互補及平角的定義,得出∠B與∠D互補,∠AEC與∠CED互補,再根據等角的補角相等,得出∠D=∠CED,即可得出結論。
(2)作CH⊥DE于H.設∠ECH=α,先用含α的代數(shù)式分別表示出∠CAE和∠BAC,即可求得∠BAD的度數(shù)。
(3)連接AG,作GN⊥AC,AM⊥EG,先證明∠CAG=∠BAC,根據tan∠BAC的值,用含m的代數(shù)式分別表示出NG、AN、AG的長,再由∠ACG=60°,求出m的值,再根據勾股定理即可求得AE的長。
【考點精析】利用勾股定理的概念和圓內接四邊形的性質對題目進行判斷即可得到答案,需要熟知直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;把圓分成n(n≥3):1、依次連結各分點所得的多邊形是這個圓的內接正n邊形2、經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形.
科目:初中數(shù)學 來源: 題型:
【題目】拋物線y=x2﹣2mx﹣3m2(m>0)與x軸交于A、B兩點,A點在B點左邊,與y軸交于C點,頂點為M.
(1)當m=1時,求點A、B、M坐標;
(2)如圖(1)的條件下,若P為拋物線上一個動點,以AP為斜邊的等腰直角的直角頂點Q在對稱軸上,(A、P、Q按順時針方向排列),求P點坐標.
(3)如圖2,若一次函數(shù)y=kx+b過B點且與拋物線只有一個公共點,平移直線y=kx+b,使其過拋物線的頂點M,與拋物線另一個交點為D,與x軸交于F點,當m變化時,求證:DF:MF是定值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,P為AD邊上一點,沿直線BP將△ABP翻折至△EBP(點A的對應點為點E),PE與CD相交于點O,且OE=OD.
(1)求證:PE=DH;
(2)若AB=10,BC=8,求DP的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公交公司有A,B型兩種客車,它們的載客量和租金如下表:
A | B | |
載客量(人/輛) | 45 | 30 |
租金(元/輛) | 400 | 280 |
紅星中學根據實際情況,計劃租用A,B型客車共5輛,同時送七年級師生到基地參加社會實踐活動,設租用A型客車x輛,根據要求回答下列問題:
(1)用含x的式子填寫下表:
車輛數(shù)(輛) | 載客量(人) | 租金(元) | |
A | x | 45x | 400x |
B | 5-x |
(2)若要保證租車費用不超過1900元,求x的最大值;
(3)在(2)的條件下,若七年級師生共有195人,寫出所有可能的租車方案,并確定最省錢的租車方案.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,小磊老師從甲地去往10千米的乙地,開始以一定的速度行駛,之后由于道路維修,速度變?yōu)樵瓉淼乃姆种唬^了維修道路后又變?yōu)樵瓉淼乃俣鹊竭_乙地.設小磊老師行駛的時間為x(分鐘),行駛的路程為y(千米),圖中的折線表示y與x之間的函數(shù)關系,則小磊老師從甲地到達乙地所用的時間是( )
A.15分鐘
B.20分鐘
C.25分鐘
D.30分鐘
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,三角形A′B′C′是三角形ABC經過某種變換后得到的圖形.
(1)分別寫出點A和點A′,點B和點B′,點C和點C′的坐標;
(2)觀察點A和點A′,點B和點B′,點C和點C′的坐標,用文字語言描述它們的坐標之間的關系 ;
(3)三角形ABC內任意一點M的坐標為(x,y),點M經過這種變換后得到點M′,則點M′的坐標為 .
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com