【題目】某鎮(zhèn)水庫(kù)的可用水量為12000萬(wàn)立方米,假設(shè)年降水量不變,能維持該鎮(zhèn)16萬(wàn)人20年的用水量.實(shí)施城市化建設(shè),新遷入4萬(wàn)人后,水庫(kù)只夠維持居民15年的用水量.
(1)問(wèn):年降水量為多少萬(wàn)立方米?每人年平均用水量多少立方米?
(2)政府號(hào)召節(jié)約用水,希望將水庫(kù)的保用年限提高到25年,則該鎮(zhèn)居民人均每年需節(jié)約多少立方米才能實(shí)現(xiàn)目標(biāo)?

【答案】
(1)解:設(shè)年降水量為x萬(wàn)立方米,每人每年平均用水量為y立方米,由題意,得

,

解得:

答:年降水量為200萬(wàn)立方米,每人年平均用水量為50立方米


(2)解:設(shè)該城鎮(zhèn)居民年平均用水量為z立方米才能實(shí)現(xiàn)目標(biāo),由題意,得

12000+25×200=20×25z,

解得:z=34

則50﹣34=16(立方米).

答:該城鎮(zhèn)居民人均每年需要節(jié)約16立方米的水才能實(shí)現(xiàn)目標(biāo)


【解析】(1)設(shè)年降水量為x萬(wàn)立方米,每人每年平均用水量為y立方米,根據(jù)儲(chǔ)水量+降水量=總用水量建立方程求出其解就可以了;(2)設(shè)該城鎮(zhèn)居民年平均用水量為z立方米才能實(shí)現(xiàn)目標(biāo),同樣由儲(chǔ)水量+25年降水量=25年20萬(wàn)人的用水量為等量關(guān)系建立方程求出其解即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,AB=5,BC=3,AC=4,以點(diǎn)C為圓心的圓與AB相切,則⊙C的半徑為(
A.2.3
B.2.4
C.2.5
D.2.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有公路l1同側(cè)、l2異側(cè)的兩個(gè)城鎮(zhèn)A,B,如下圖.電信部門(mén)要修建一座信號(hào)發(fā)射塔,按照設(shè)計(jì)要求,發(fā)射塔到兩個(gè)城鎮(zhèn)A,B的距離必須相等,到兩條公路l1,l2的距離也必須相等,發(fā)射塔C應(yīng)修建在什么位置?請(qǐng)用尺規(guī)作圖找出所有符合條件的點(diǎn),注明點(diǎn)C的位置.(保留作圖痕跡,不要求寫(xiě)出畫(huà)法)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABCAm°,ABC和∠ACD的平分線(xiàn)相交于點(diǎn)A1得∠A1;A1BC和∠A1CD的平分線(xiàn)相交于點(diǎn)A2,得∠A2;…;A2018BC和∠A2018CD的平分線(xiàn)交于點(diǎn)A2019,則∠A2019________度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC,點(diǎn)EAC,∠AEB=∠ABC.

(1)1,∠BAC的角平分線(xiàn)AD,分別交CBBED、F兩點(diǎn),求證:∠EFD=∠ADC

(2)2,△ABC的外角∠BAG的角平分線(xiàn)AD,分別交CB、BE的延長(zhǎng)線(xiàn)于D、F兩點(diǎn),試探究(1)中結(jié)論是否仍成立?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABC為直角三角形,∠C=90°,邊BC是⊙0的切線(xiàn),切點(diǎn)為D,AB經(jīng)過(guò)圓心O并與圓相交于點(diǎn)E,連接AD.

(1)求證:AD平分∠BAC;
(2)若AC=8,tan∠DAC= ,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知菱形ABCD的對(duì)角線(xiàn)相交于點(diǎn)O,延長(zhǎng)AB至點(diǎn)E,使BE=AB,連接CE.
(1)求證:BD=EC;
(2)若∠E=50°,求∠BAO的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直角梯形ABCO的兩邊OA,OC在坐標(biāo)軸的正半軸上,BC∥x軸,OA=OC=4,以直線(xiàn)x=1為對(duì)稱(chēng)軸的拋物線(xiàn)過(guò)A,B,C三點(diǎn).

(1)求該拋物線(xiàn)的函數(shù)解析式;
(2)已知直線(xiàn)l的解析式為y=x+m,它與x軸交于點(diǎn)G,在梯形ABCO的一邊上取點(diǎn)P.
①當(dāng)m=0時(shí),如圖1,點(diǎn)P是拋物線(xiàn)對(duì)稱(chēng)軸與BC的交點(diǎn),過(guò)點(diǎn)P作PH⊥直線(xiàn)l于點(diǎn)H,連結(jié)OP,試求△OPH的面積;
②當(dāng)m=﹣3時(shí),過(guò)點(diǎn)P分別作x軸、直線(xiàn)l的垂線(xiàn),垂足為點(diǎn)E,F(xiàn).是否存在這樣的點(diǎn)P,使以P,E,F(xiàn)為頂點(diǎn)的三角形是等腰三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)校開(kāi)展“陽(yáng)光體育”活動(dòng),學(xué)生會(huì)為了解學(xué)生最喜歡哪一種球類(lèi)運(yùn)動(dòng)項(xiàng)目,:足球、:乒乓球、:籃球、:羽毛球,隨機(jī)抽取了一部分學(xué)生進(jìn)行調(diào)查(要求每位同學(xué)只能選擇一種喜歡的球類(lèi)),并將調(diào)查結(jié)果繪制成如下兩個(gè)不完整的統(tǒng)計(jì)圖,如圖1,圖2,請(qǐng)你根據(jù)圖中提供的信息解答下列問(wèn)題。

(1)在這次調(diào)查中,一共調(diào)查了_____名學(xué)生;

(2)在圖1扇形統(tǒng)計(jì)圖中,求出“”部分所對(duì)應(yīng)的圓心角等于_____度;

(3)求喜歡籃球的同學(xué)占被抽查人數(shù)的百分比,并補(bǔ)全頻數(shù)分布折線(xiàn)統(tǒng)計(jì)圖.

查看答案和解析>>

同步練習(xí)冊(cè)答案