【題目】如圖,拋物線與兩坐標(biāo)軸相交于點(diǎn)是拋物線的頂點(diǎn), 是線段的中點(diǎn).

(1)求拋物線的解析式,并寫出點(diǎn)的坐標(biāo);

(2) 是拋物線上的動點(diǎn);

①當(dāng)時,求的面積的最大值;

②當(dāng)時,求點(diǎn)的坐標(biāo).

【答案】(1)y=-x2+2x+3,D(1,4); (2) ①當(dāng)x=2時,S最大值=1;F(-,-2-2)或(2-,-2+2

【解析】1)利用待定系數(shù)法可求得拋物線的解析式,然后再配方成頂點(diǎn)式即可得點(diǎn)D的坐標(biāo);

(2)①由x>1,y>0,可以確定點(diǎn)F是直線BD上方拋物線上的動點(diǎn),F(x, -x2+2x+3),過點(diǎn)FFHx軸交直線BDM,B、D的坐標(biāo)易得yBD=-2x+6,繼而得M(x,-2x+6),從而得到FM=-(x-2)2+1,再根據(jù)SBDF=SDFM+SBFM從而可得SBDF=-(x-2)2+1,根據(jù)二次函數(shù)的性質(zhì)即可得;

②分點(diǎn)Fx軸上方拋物線上,點(diǎn)Fx軸下方、y軸左側(cè)拋物線上兩種情況進(jìn)行討論即可得.

(1)拋物線與兩坐標(biāo)軸相交于點(diǎn)

由題意得:,解得:,

所以拋物線的解析式為:y=-x2+2x+3,

配方得 y=-(x-1)2+4,∴拋物線頂點(diǎn)D的坐標(biāo)為(1,4);

(2) ①∵x>1,y>0,

∴點(diǎn)F是直線BD上方拋物線上的動點(diǎn),

F(x, -x2+2x+3),

如圖,過點(diǎn)FFHx軸交直線BDM,

B(3,0), D(1,4),

yBD=-2x+6,

M(x,-2x+6),

FM=-x2+2x+3-(-2x+6)= -x2+4x-3=-(x-2)2+1,

SBDF=SDFM+SBFM

SBDF=FM(x-1)+FM(3-x)=FM(x-1+3-x)=FM =-(x-2)2+1,

∴當(dāng)x=2時,S最大值=1;

②如圖,當(dāng) FEBD,且點(diǎn)Fx軸上方拋物線上時,

設(shè)FE的解析式為y=-2x+b,

∵直線FE過點(diǎn)E(1,0),

b=2,

yFE=-2x+2,

聯(lián)立y=-2x+2y=-x2+2x+3,

解得F(2-,-2+2);

如圖,當(dāng)Fx軸下方、y軸左側(cè)拋物線上時,設(shè)直線EF與直線BD交于點(diǎn)N,

∵∠AEF=NEB,

又∵∠AEF=DBE,

∴∠NEB=DBE,

NE=NB,

∴點(diǎn)N的橫坐標(biāo)為2,

又∵點(diǎn)N在直線yBD=-2x+6,

N(2,2),

yN=2x-2,

聯(lián)立y=2x-2y=-x2+2x+3,

解得F(-,-2-2),

綜上所述F(-,-2-2)或(2-,-2+2).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(9分)如圖,△ABC為等腰三角形,ACBC,以邊BC為直徑的半圓與邊ABAC分別交于D,E兩點(diǎn),過點(diǎn)DDFAC,垂足為點(diǎn)F

(1)判斷DF與⊙O的位置關(guān)系,并證明你的結(jié)論;

(2)若BC=9,EF=1,求DF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知含字母a,b的代數(shù)式是:3[a2+2b2+ab2]3a2+2b2)﹣4aba1

1)化簡代數(shù)式;

2)小紅取ab互為倒數(shù)的一對數(shù)值代入化簡的代數(shù)式中,恰好計(jì)算得代數(shù)式的值等于0,那么小紅所取的字母b的值等于多少?

3)聰明的小剛從化簡的代數(shù)式中發(fā)現(xiàn),只要字母b取一個固定的數(shù),無論字母a取何數(shù),代數(shù)式的值恒為一個不變的數(shù),那么小剛所取的字母b的值是多少呢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A、B分別為數(shù)軸上的兩點(diǎn),A點(diǎn)對應(yīng)的數(shù)為﹣20,B點(diǎn)對應(yīng)的數(shù)為100.

(1)請寫出與A,B兩點(diǎn)距離相等的點(diǎn)M所對應(yīng)的數(shù)   

(2)現(xiàn)有一只電子螞蟻PB點(diǎn)出發(fā),以6單位/秒的速度向左運(yùn)動,同時另一只電子螞蟻Q恰好從A點(diǎn)出發(fā),以4單位/秒的速度向右運(yùn)動,x秒后兩只電子螞蟻在數(shù)軸上的C點(diǎn)相遇,請列方程求出x,并指出點(diǎn)C表示的數(shù).

(3)若當(dāng)電子螞蟻PB點(diǎn)出發(fā)時,以6單位/秒的速度向左運(yùn)動,同時另一只電子螞蟻Q恰好從A點(diǎn)出發(fā),以4單位/秒的速度也向左運(yùn)動,y秒后兩只電子螞蟻在數(shù)軸上的D點(diǎn)相遇,請列方程求出y并指出點(diǎn)D表示的數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P從(0,3)出發(fā),沿所示的方向運(yùn)動,每當(dāng)碰到矩形的邊時反彈,反彈時反射角等于入射角,當(dāng)點(diǎn)p2019次碰到矩形的邊時點(diǎn)P的坐標(biāo)為(  )

A. 1,4 B. 5,0 C. 8,3 D. 64

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,某公園設(shè)計(jì)節(jié)日鮮花擺放方案,其中一個花壇由一批花盆堆成六角垛,頂層一個,以下各層堆成六邊形,逐層每邊增加一個花盆,若這垛花盆底層最長的一排共13個花盆,則底層的花盆的個數(shù)是(

A.91B.127C.169D.255

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系中,點(diǎn)A是軸正半軸上一個定點(diǎn),點(diǎn)P是函數(shù)>0)上一個動點(diǎn),PB⊥軸于點(diǎn)B,連結(jié)PA,當(dāng)點(diǎn)P的橫坐標(biāo)逐漸增大時,四邊形OAPB的面積將會(  )

A. 逐漸增大 B. 先增后減 C. 逐漸減小 D. 先減后增

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】兩個三角板ABC,DEF按如圖所示的位置擺放,點(diǎn)B與點(diǎn)D重合,邊AB與邊DE在同一條直線上(假設(shè)圖形中所有的點(diǎn)、線都在同一平面內(nèi)),其中,∠C=∠DEF=90°,∠ABC=∠F=30°,AC=DE=4 cm.現(xiàn)固定三角板DEF,將三角板ABC沿射線DE方向平移,當(dāng)點(diǎn)C落在邊EF上時停止運(yùn)動.設(shè)三角板平移的距離為(cm),兩個三角板重疊部分的面積為 (cm2).

(1)當(dāng)點(diǎn)C落在邊EF上時,=________cm;

(2)求關(guān)于的函數(shù)表達(dá)式,并寫出自變量的取值范圍;

(3)設(shè)邊BC的中點(diǎn)為點(diǎn)M,邊DF的中點(diǎn)為點(diǎn)N,直接寫出在三角板平移過程中,點(diǎn)M與點(diǎn)N之間距離的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A20),B ( 2,0)C y 軸負(fù)半軸上一點(diǎn),D是第四象限內(nèi)一動點(diǎn),且始終有BDA 2ACO 成立,過C 點(diǎn)作CE BD 于點(diǎn) E .

1)求證:DAC DBC

2)若點(diǎn) F AD 的延長線上,求證:CD 平分BDF ;

查看答案和解析>>

同步練習(xí)冊答案