(2009•寶山區(qū)二模)如圖,直角梯形ABCD中,AD∥BC,∠BCD=90°,且CD=2AD,tan∠ABC=2.
(1)求證:BC=CD;
(2)在邊AB上找點E,連接CE,將△BCE繞點C順時針方向旋轉(zhuǎn)90°得到△DCF.連接EF,如果EF∥BC,試畫出符合條件的大致圖形,并求出AE:EB的值.

【答案】分析:(1)過點A作AH⊥BC,解直角△ABH,可知BH=AD,且CD=2AD,tan∠ABC=2,可得BC=CD.
(2)依題意畫出圖形,利用AE:EB=DM:CM,根據(jù)角度關(guān)系,求出FM=CM,F(xiàn)M=2DM,進(jìn)而可求出比值.
解答:(1)證明:過點A作AH⊥BC,垂足為點H,如圖,
在Rt△AHB中,∵tan∠ABC=2,
∴AH=2BH,
∵AD∥BC,∠BCD=90°
∴AH=DC,AD=HC,
∵CD=2AD,
∴AH=2HC,
∴BH=HC,即BC=CD;

(2)解:畫出符合條件的大致圖形,
根據(jù)題意,得:△ECF中,CE=CF,∠ECF=90°,∠FDC=∠CBE,
∵EF∥BC,∴DC⊥EF,
∴∠ECD=∠FCD=45°,CM=FM,
設(shè)EF與DC交于點M,
Rt△DMF中,∵tan∠FDM=tan∠ABC=2,
∴FM=2DM

點評:(1)本題考查梯形,矩形、直角三角形的相關(guān)知識.解決此類題要懂得用梯形的常用輔助線,把梯形分割為矩形和直角三角形,從而由矩形和直角三角形的性質(zhì)來求解.
(2)考查了作圖能力以及平行線平分線段成比例定理.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2010年上海市寶山區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2009•寶山區(qū)二模)如圖,矩形ABCD中,,點E是BC邊上的一個動點,連接AE,過點D作DF⊥AE,垂足為點F.
(1)設(shè)BE=x,∠ADF的余切值為y,求y關(guān)于x的函數(shù)解析式;
(2)若存在點E,使得△ABE、△ADF與四邊形CDFE的面積比是3:4:5,試求矩形ABCD的面積;
(3)對(2)中求出的矩形ABCD,連接CF,當(dāng)BE的長為多少時,△CDF是等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年上海市寶山區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2009•寶山區(qū)二模)如圖,直線與x軸交于點A,與y軸交于點B,把△AOB沿著過點B的某條直線折疊,使點A落在y軸負(fù)半軸上的點D處,折痕與x軸交于點C.
(1)試求點A、B、C的坐標(biāo);
(2)求sin∠ABC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年上海市寶山區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2009•寶山區(qū)二模)在直角坐標(biāo)系中,把點A(-1,a)(a為常數(shù))向右平移4個單位得到A′,經(jīng)過點A、A′的拋物線y=ax2+bx+c與y軸的交點的縱坐標(biāo)為2.
(1)求這條拋物線的解析式;
(2)設(shè)該拋物線的頂點為點P,點B的坐標(biāo)為(1,m),且m<3,若△ABP是等腰三角形,求點B的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年上海市寶山區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2009•寶山區(qū)二模)已知一次函數(shù)y=(1-2m)x+m-3圖象與y軸的交點位于y軸負(fù)半軸上,且函數(shù)值y隨自變量x的增大而減。
(1)求m的取值范圍;
(2)又如果該一次函數(shù)的圖象與坐標(biāo)軸圍成的三角形面積是2,求這個一次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年上海市寶山區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:填空題

(2009•寶山區(qū)二模)請你寫出一個二次函數(shù)解析式,使其圖象的頂點在y軸上,且在y軸右側(cè)圖象是下降的   

查看答案和解析>>

同步練習(xí)冊答案