【題目】為加快5G網(wǎng)絡(luò)建設(shè),某移動通信公司在一個坡度為2:1的山腰上建了一座5G信號通信塔AB,在距山腳C處水平距離39米的點(diǎn)D處測得通信塔底B處的仰角是35°,測得通信塔頂A處的仰角是49°,(參考數(shù)據(jù):sin35°≈0.57,tan35°≈0.70,sin49°≈0.75,tan49°≈1.15),則通信塔AB的高度約為( )
A.27米B.31米C.48米D.52米
【答案】A
【解析】
根據(jù)題意畫出圖形,延長AB交DC延長線于點(diǎn)E,設(shè)CE=x、則BE=2x、DE=39+x,由tan∠BDE=求得x=21,即可知DE=39+x=60、BE=2x=42,再由AE=DEtan∠ADE=69,根據(jù)AB=AE﹣BE可得答案.
解:如圖所示,延長AB交DC延長線于點(diǎn)E,則∠DEA=90°,
由題意知∠DBC=35°、∠ADE=49°、CD=39米,BC的坡度為2:1
設(shè)CE=x、則BE=2x、DE=39+x,
由tan∠BDE=可得≈0.7,
解得:x=21,
∴DE=39+x=60、BE=2x=42,
在Rt△ADE中,AE=DEtan∠ADE≈60×1.15=69,
則AB=AE﹣BE=69﹣42=27(米),
故選:A.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是一張盾構(gòu)隧道斷面結(jié)構(gòu)圖.隧道內(nèi)部為以O為圓心,AB為直徑的圓.隧道內(nèi)部共分為三層,上層為排煙道,中間為行車隧道,下層為服務(wù)層.點(diǎn)A到頂棚的距離為1.6m,頂棚到路面的距離是6.4m,點(diǎn)B到路面的距離為4.0m.請求出路面CD的寬度.(精確到0.1m)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,AB是⊙O的弦,∠OAB=45°,C是優(yōu)弧AB上的一點(diǎn),BD∥OA,交CA延長線于點(diǎn)D,連接BC.
(1)求證:BD是⊙O的切線;
(2)若AC=,∠CAB=75°,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知k為實(shí)數(shù),關(guān)于x的方程為x2+(k+2)x+2k=1.
(1)判斷方程有無實(shí)數(shù)根.
(2)當(dāng)方程的根和k都是有理數(shù)時,請直接寫出其中k的1個值和相應(yīng)方程的根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為響應(yīng)市委市政府提出的建設(shè)“綠色襄陽”的號召,我市某單位準(zhǔn)備將院內(nèi)一塊長30m,寬20m的長方形空地,建成一個矩形花園.要求在花園中修兩條縱向平行和一條橫向彎折的小道,剩余的地方種植花草,如圖所示,要使種植花草的面積為532m2,那么小道進(jìn)出口的寬度應(yīng)為多少米?(注:所有小道進(jìn)出口的寬度相等,且每段小道均為平行四邊形)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,AD、CE是高,連接DE.
(1)求證:BC=2DE;
(2)若∠BAC=50°,求∠ADE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某居民小區(qū)一處圓柱形的輸水管道破裂,維修人員為更換管道,需確定管道圓形截面的半徑,下圖是水平放置的破裂管道有水部分的截面.
⑴請你補(bǔ)全這個輸水管道的圓形截面;
⑵若這個輸水管道有水部分的水面寬AB=16cm,水面最深地方的高度為4cm,求這個圓形截面的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,AD=10.直角尺的直角頂點(diǎn)P在AD上滑動時(點(diǎn)P與A,D不重合),一直角邊經(jīng)過點(diǎn)C,另一直角邊AB交于點(diǎn)E.
(1)求證:
(2)是否存在這樣的點(diǎn)P,使的周長等于周長的2倍?若存在,求出DP的長;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,我們定義直線y=ax-a為拋物線y=ax2+bx+c(a、b、c為常數(shù),a≠0)的“衍生直線”;有一個頂點(diǎn)在拋物線上,另有一個頂點(diǎn)在y軸上的三角形為其“衍生三角形”.已知拋物線與其“衍生直線”交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與x軸負(fù)半軸交于點(diǎn)C.
(1)填空:該拋物線的“衍生直線”的解析式為 ,點(diǎn)A的坐標(biāo)為 ,點(diǎn)B的坐標(biāo)為 ;
(2)如圖,點(diǎn)M為線段CB上一動點(diǎn),將△ACM以AM所在直線為對稱軸翻折,點(diǎn)C的對稱點(diǎn)為N,若△AMN為該拋物線的“衍生三角形”,求點(diǎn)N的坐標(biāo);
(3)當(dāng)點(diǎn)E在拋物線的對稱軸上運(yùn)動時,在該拋物線的“衍生直線”上,是否存在點(diǎn)F,使得以點(diǎn)A、C、E、F為頂點(diǎn)的四邊形為平行四邊形?若存在,請直接寫出點(diǎn)E、F的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com