試題分析:(1)由于反比例函數(shù)的圖象是一個中心對稱圖形,點B、D是正比例函數(shù)與反比例函數(shù)圖象的交點,所以點B與點D關于點O成中心對稱,則OB=OD,又OA=OC,根據(jù)對角線互相平分的四邊形是平行四邊形,可得出四邊形ABCD的形狀;
(2)①把點B(p,1)代入
,即可求出p的值;過B作BE⊥x軸于E,在Rt△BOE中,根據(jù)正切函數(shù)的定義求出tanα的值,得出α的度數(shù);要求m的值,首先解Rt△BOE,得出OB的長度,然后根據(jù)進行的對角線相等得出OA=OB=OC=OD,從而求出m的值;②當m=2時,設B(x,
),則x>0,由OB=2,得出
,解此方程,得滿足條件的x的值有兩個,故能使四邊形ABCD為矩形的點B共有兩個;
(3)假設四邊形ABCD為菱形,根據(jù)菱形的對角線垂直且互相平分,可知AC⊥BD,且AC與BD互相平分,又AC在x軸上,所以BD應在y軸上,這與“點B、D分別在第一、三象限”矛盾,所以四邊形ABCD不可能為菱形.
(1)平行四邊形;
(2)∵矩形對角線相等且互相平分
∴OC=OB,又B(P,1)在
上,則P=
∴B(
,1),則OB=2,
∴OC=2,則m=2,∠BOC=30°,即
=30°
(3)當m=2時,點B共有2個;
(4)四邊形ABCD不能是菱形。理由如下:
∵反比例圖象與y軸永無交點,即BD不可能在y軸上。
∴BD不垂直于AC
即四邊形ABCD的對角線一定不垂直
∴四邊形ABCD不能為菱形
點評:本題知識點較多,綜合性強,難度較大,一般是中考壓軸題,需要特別注意.