【題目】家用電滅蚊器的發(fā)熱部分使用了PTC發(fā)熱材料,它的電阻R(kΩ)隨溫度t(℃)(在一定范圍內(nèi))變化的大致圖象如圖所示.通電后,發(fā)熱材料的溫度在由室溫10℃上升到30℃的過程中,電阻與溫度成反例關(guān)系,且在溫度達(dá)到30℃時,電阻下降到最小值;隨后電阻承溫度升高而增加,溫度每上升1℃,電阻增加kΩ.

(1)求Rt之間的關(guān)系式;

(2)家用電滅蚊器在使用過程中,溫度在什么范圍內(nèi)時,發(fā)熱材料的電阻不超過4kΩ.

【答案】(1)見解析;(2)15℃~37.5℃

【解析】

1)當(dāng)10≤t≤30時,是反比例函數(shù),利用待定系數(shù)法可求出解析式,然后將t=30℃代入關(guān)系式求出此時的R值,然后再根據(jù)題意列式即可求出t>30時的函數(shù)關(guān)系式;

(2)將R=4代入(1)中求得的兩個解析式即可求得答案.

1)∵溫度在由室溫10℃上升到30℃的過程中,電阻與溫度成反比例關(guān)系,

∴當(dāng)10≤t≤30時,設(shè)關(guān)系為R=,

將(10,6)代入上式中得:6=,解得k=60,

故當(dāng)10≤t≤30時,R=;

t=30℃代入上式中得:R==2,

∴溫度在30℃時,電阻R=2(kΩ),

∵在溫度達(dá)到30℃時,電阻下降到最小值,隨后電阻隨溫度升高而增加,溫度每上升1℃,電阻增加kΩ,

∴當(dāng)t≥30時,R=2+(t﹣30)=t﹣6,

Rt之間的關(guān)系式為R= ;

(2)把R=4代入R=t﹣6,得t=37.5,

R=4代入R=,得t=15,

所以,溫度在15~37.5℃時,發(fā)熱材料的電阻不超過4kΩ.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:平面內(nèi)的直線l1l2相交于點O,對于該平面內(nèi)任意一點M,點M到直線l1、l2的距離分別為a、b,則稱有序非負(fù)實數(shù)對(a,b)是點M的“距離坐標(biāo)”,根據(jù)上述定義,距離坐標(biāo)為(2,1)的點的個數(shù)有( 。

A. 2B. 3C. 4D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圖①,圖②都是由四條邊長均為1的小四邊形構(gòu)成的網(wǎng)格,每個小四邊形的頂點稱為格點.OM,NA,B均在格點上,請僅用無刻度直尺在網(wǎng)格中完成下列畫圖(保留連線痕跡).

1)在圖①中,畫出OMPONP,要求點P在格點上.

2)在圖②中,畫一個RtABC,∠ACB=90°,要求點C在格點上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,對角線AC、BD相交于點O,BD2AD,E、FG分別是OC、OD、AB的中點,下列結(jié)論:①∠OBEADO;②EGEF;③GF平分∠AGE;④EFGE,其中正確的是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形網(wǎng)格中,每個小正方形的邊長為1個單位長度.平面直角坐標(biāo)系xOy的原點O在格點上,x軸、y軸都在格線上.線段AB的兩個端點也在格點上.

1)若將線段AB繞點O逆時針旋轉(zhuǎn)90°得到線段A1B1,試在圖中畫出線段A1B1

2)若線段A2B2與線段A1B1關(guān)于y軸對稱,請畫出線段A2B2

3)若點P是此平面直角坐標(biāo)系內(nèi)的一點,當(dāng)點A、B1、B2、P四邊圍成的四邊形為平行四邊形時,請你直接寫出點P的坐標(biāo)(寫出一個即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:四邊形ABCD是一張矩形紙片,AB3cm,BC5cm

1)在矩形ABCD的邊AD上找一點E,使CE平分∠BED,請利用刻度尺或圓規(guī)作出點E,寫出作法,并給出證明;

2)把矩形紙片沿某直線剪一刀分成兩部分后,再用這兩部分拼成一個菱形,請畫出剪拼的示意圖,并求出菱形的較長對角線的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖已知點A(1,a是反比例函數(shù)的圖象上一點,直線與反比例函數(shù)的圖象的交點為點BD,B(3,﹣1),

(1)求反比例函數(shù)的解析式;

(2)求點D坐標(biāo)并直接寫出y1y2x的取值范圍;

(3)動點Px,0)x軸的正半軸上運動,當(dāng)線段PA與線段PB之差達(dá)到最大時,求點P的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人相約周末登花果山,甲、乙兩人距地面的高度y(米)與登山時間x(分)之間的函數(shù)圖象如圖所示,根據(jù)圖象所提供的信息解答下列問題:

(1)甲登山上升的速度是每分鐘   米,乙在A地時距地面的高度b   米.

(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,請求出乙登山全程中,距地面的高度y(米)與登山時間x(分)之間的函數(shù)關(guān)系式.

(3)登山多長時間時,甲、乙兩人距地面的高度差為50米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1AOB=30°,點M為射線OB上一點,平面內(nèi)有一點P使∠PAM=150°PA=AM.

1)求證:OMA=OAP.

2)如圖2,若射線OB上有一點Q使POA=AQO,求證:OP=AQ.

3)如圖3,在(2)的條件下,過AAHOB,且OH=AH,已知N點為MQ的中點,且ON=,OA=____________.

查看答案和解析>>

同步練習(xí)冊答案