如圖,從一個直徑為2的圓形鐵皮中剪下一個圓心角為90°的扇形.
(1)求這個扇形的面積(結果保留π);
(2)在剩下的三塊余料中,能否從第③塊余料中剪出一個圓作為底面與此扇形圍成一個圓錐?說明理由.
(1)連接BC、AO,并延長AO交⊙O于D,交弧BC于點E,
∵扇形的圓心角為90°,
∴BC為⊙O直徑,AB=AC,
∴AO⊥BC,(1分)
在Rt△AOB中,∠AOB=90°,
由勾股定理得:AB=
AO2+BO2
=
2
(AB>0),(2分)
s=
R2
360
=
π
2
;(3分)

(2)由(1)可知:DE=AD-AE=AD-AB=2-
2

∵弧BC的長l=
nπR
180
=
2
π
2

2πr=
2
π
2
,
2r=
2
2
,(4分)
2-
2
2
2
;
∴不能從第③塊余料中剪出一個圓作為底面與此扇形圍成一個圓錐.(5分)
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,△ABC為等腰直角三角形,∠A=90°,AB=AC=
2
,⊙A與BC相切,則圖中陰影部分的面積為(  )
A.1-
π
2
B.1-
π
3
C.1-
π
4
D.1-
π
5

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,依次以三角形、四邊形、…、n邊形的各頂點為圓心畫半徑為l的圓,且圓與圓之間兩兩不相交.把三角形與各圓重疊部分面積之和記為S3,四邊形與各圓重疊部分面積之和記為S4,….n邊形與各圓重疊部分面積之和記為Sn.則S90的值為______.(結果保留π)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,⊙O的直徑AB=6,D為⊙O上一點,∠BAD=30°,過D點的切線交AB的延長線于點C.陰影部分的面積為______.(精確到0.01)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知扇形OAB的圓心角為直角,OA=4cm,以AB為直徑作半圓,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖所示,ABCD是正方形,
AC
的圓心在B處,
ADC
是以AC為直徑的半圓.設AB=a,則陰影部分的面積是______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在Rt△ABC中,∠C=90°,AC=4,BC=2,分別以AC、BC為直徑畫半圓,則圖中陰影部分的面積為多少?(結果保留π).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,正方形ABCD內接于⊙O,⊙O的半徑為2,以圓心O為頂點作∠MON,使∠MON=90°,OM、ON分別與⊙O交于點E、F,與正方形ABCD的邊交于點G、H,則由OE、OF、
EF
及正方形ABCD的邊圍成的圖形(陰影部分)的面積S=______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

下圖中三個圓的半徑都是5cm,三個圓兩兩相交于圓心,則陰影部分的面積和為( 。
A.
25
4
π
B.
25
2
π
C.25+πD.
25
2
-
π
4

查看答案和解析>>

同步練習冊答案