【題目】下列事件中是必然事件的是( 。
A. 兩弧長(zhǎng)相等,則兩弧所對(duì)圓心角相等
B. 平分弦的直徑,也平分這條弦所對(duì)的弧
C. 圓內(nèi)接正五邊形的中心角為72°
D. 兩圓相切,一定內(nèi)切
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,若一圖形各點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)分別減5,則圖形與原圖形相比( )
A. 向右平移了5個(gè)單位長(zhǎng)度 B. 向左平移了5個(gè)單位長(zhǎng)度
C. 向上平移了5個(gè)單位長(zhǎng)度 D. 向下平移了5個(gè)單位長(zhǎng)度
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】【問題情境】一節(jié)數(shù)學(xué)課后,老師布置了一道課后練習(xí)題:
如圖:已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于點(diǎn)D,點(diǎn)E、F分別在A和BC上,∠1=∠2,F(xiàn)G⊥AB于點(diǎn)G,求證:△CDE≌△EGF.
(1)閱讀理解,完成解答
本題證明的思路可用下列框圖表示:
根據(jù)上述思路,請(qǐng)你完整地書寫這道練習(xí)題的證明過程;
(2)特殊位置,證明結(jié)論
若CE平分∠ACD,其余條件不變,求證:AE=BF;
(3)知識(shí)遷移,探究發(fā)現(xiàn)
如圖,已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于點(diǎn)D,若點(diǎn)E是DB的中點(diǎn),點(diǎn)F在直線CB上且滿足EC=EF,請(qǐng)直接寫出AE與BF的數(shù)量關(guān)系.(不必寫解答過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了加強(qiáng)公民的節(jié)水意識(shí),合理利用水資源,各地采用價(jià)格調(diào)控手段達(dá)到節(jié)約用水的目的,某市規(guī)定如下用水收費(fèi)標(biāo)準(zhǔn):每戶每月的用水量不超過6立方米時(shí),水費(fèi)按每立方米a元收費(fèi),超過6立方米時(shí),不超過的部分每立方米仍按a元收費(fèi),超過的部分每立方米按b元收費(fèi),該市小明家今年9、10月份的用水量和所交水費(fèi)如下表所示:
月份 | 用水量(m3) | 收費(fèi)(元) |
9 | 5 | 7.5 |
10 | 9 | 18 |
設(shè)小明家每月用水量x(立方米),應(yīng)交水費(fèi)y(元).
⑴則a= ,b= ;
⑵ 當(dāng)x≤6,x>6時(shí),分別寫出y與x的函數(shù)關(guān)系式;
⑶ 若該戶11月份、12月份用水量為14立方米共交水費(fèi)27元(11月份用水小于12月份用水),求該戶11月份水、12月份用水各多少立方米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=﹣x2+3的頂點(diǎn)坐標(biāo)是( )
A. (0,3) B. (1,3) C. (﹣1,﹣3) D. (2,﹣3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2016年春節(jié)期間,在網(wǎng)絡(luò)上用“百度”搜索引擎搜索“開放二孩”,能搜索到與之相關(guān)的結(jié)果個(gè)數(shù)約為45100000,這個(gè)數(shù)用科學(xué)記數(shù)法表示為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在離水面高度(AC)為2米的岸上有人用繩子拉船靠岸,開始時(shí)繩子與水面的夾角為30°,此人以每秒0.5米的速度收繩子.
問:(1)未開始收繩子的時(shí)候,圖中繩子BC的長(zhǎng)度是多少米?
(2)收繩2秒后船離岸邊多少米?(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】升降機(jī)運(yùn)行時(shí),如果下降13米記作“﹣13米”,那么當(dāng)它上升25米時(shí),記作_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,BC=2AB=4,點(diǎn)E、F分別是BC、AD的中點(diǎn).
(1)求證:△ABE≌△CDF;
(2)當(dāng)四邊形AECF為菱形時(shí),求出該菱形的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com