精英家教網 > 初中數學 > 題目詳情
(2010•黔南州)下列說法正確的是( )
A.隨機事件發(fā)生的可能性是50%
B.一組數據2,3,3,6,8,5的眾數與中位數都是3
C.“打開電視,正在播放關于奧運火炬?zhèn)鬟f的新聞”是必然事件
D.若甲組數據的方差S2=0.31,乙組數據的方差S2=0.02,則乙組數據比甲組數據穩(wěn)定
【答案】分析:根據平均數,中位數,眾數及方差的概念得到正確結論即可.
解答:解:A、隨機事件發(fā)生的可能性在0和1之間;
B、一組數據2,3,3,6,8,5的眾數是3,中位數是4;
C、“打開電視,正在播放關于奧運火炬?zhèn)鬟f的新聞”是隨機事件;
D、因為方差是衡量一個樣本波動大小的量,方差越大,數據的波動就越大.
故選D.
點評:用到的知識點為:隨機事件為可能發(fā)生,也可能不發(fā)生的事件;可能性在0和1之間;方差越小數據的波動性越穩(wěn)定.
練習冊系列答案
相關習題

科目:初中數學 來源:2011-2012學年江蘇省蘇州市工業(yè)園區(qū)八年級第二學期數學卷 題型:單選題

(2010•黔南州)如果,則=(  )

A.B.1C.D.2

查看答案和解析>>

科目:初中數學 來源:2009年江蘇省連云港市中考數學原創(chuàng)試卷大賽(30)(解析版) 題型:解答題

(2010•黔南州)如圖,在平面直角坐標系中,已知點A坐標為(2,4),直線x=2與x軸相交于點B,連接OA,拋物線y=x2從點O沿OA方向平移,與直線x=2交于點P,頂點M到A點時停止移動.
(1)求線段OA所在直線的函數解析式;
(2)設拋物線頂點M的橫坐標為m,
①用m的代數式表示點P的坐標;
②當m為何值時,線段PB最短;
(3)當線段PB最短時,相應的拋物線上是否存在點Q,使△QMA的面積與△PMA的面積相等?若存在,請求出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2010年浙江省臺州市臨海市杜橋實驗中學初三第四次統(tǒng)練數學試卷(解析版) 題型:解答題

(2010•黔南州)如圖,在平面直角坐標系中,已知點A坐標為(2,4),直線x=2與x軸相交于點B,連接OA,拋物線y=x2從點O沿OA方向平移,與直線x=2交于點P,頂點M到A點時停止移動.
(1)求線段OA所在直線的函數解析式;
(2)設拋物線頂點M的橫坐標為m,
①用m的代數式表示點P的坐標;
②當m為何值時,線段PB最短;
(3)當線段PB最短時,相應的拋物線上是否存在點Q,使△QMA的面積與△PMA的面積相等?若存在,請求出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2010年貴州省黔南州中考數學試卷(解析版) 題型:解答題

(2010•黔南州)如圖,在平面直角坐標系中,已知點A坐標為(2,4),直線x=2與x軸相交于點B,連接OA,拋物線y=x2從點O沿OA方向平移,與直線x=2交于點P,頂點M到A點時停止移動.
(1)求線段OA所在直線的函數解析式;
(2)設拋物線頂點M的橫坐標為m,
①用m的代數式表示點P的坐標;
②當m為何值時,線段PB最短;
(3)當線段PB最短時,相應的拋物線上是否存在點Q,使△QMA的面積與△PMA的面積相等?若存在,請求出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2009年天津市東麗區(qū)中考數學一模試卷(解析版) 題型:解答題

(2010•黔南州)如圖,在平面直角坐標系中,已知點A坐標為(2,4),直線x=2與x軸相交于點B,連接OA,拋物線y=x2從點O沿OA方向平移,與直線x=2交于點P,頂點M到A點時停止移動.
(1)求線段OA所在直線的函數解析式;
(2)設拋物線頂點M的橫坐標為m,
①用m的代數式表示點P的坐標;
②當m為何值時,線段PB最短;
(3)當線段PB最短時,相應的拋物線上是否存在點Q,使△QMA的面積與△PMA的面積相等?若存在,請求出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案