對(duì)四邊形的觀察與探索

  四邊形是大家最熟悉的圖形之一,我們已經(jīng)發(fā)現(xiàn)了它的許多性質(zhì).只要善于觀察、樂于探索,我們還會(huì)發(fā)現(xiàn)更多的結(jié)論.

  問題的提出:四邊形一條對(duì)角線上任意一點(diǎn)與另外兩個(gè)頂點(diǎn)的連線,將四邊形分成四個(gè)三角形,其中相對(duì)的兩對(duì)三角形的面積之積有何關(guān)系?你能探索出結(jié)論嗎?

(1)為了更直觀的發(fā)現(xiàn)問題,我們不妨先在特殊的四邊形--平行四邊形中,研究這個(gè)問題:

已知:在ABCD中,O是對(duì)角線BD上任意一點(diǎn)(如圖),求證:S△OBC·S△OAD=S△OAB·S△OCD

(2)有了(1)中的探索過程作參照,你一定能類比出在一般四邊形(如圖)中,解決問題的辦法了吧!填寫結(jié)論并寫出證明過程.

已知:在四邊形ABCD中,O是對(duì)角線BD上任意一點(diǎn)(如圖)

求證:________________

(3)在三角形中(如圖),你能否歸納出類似的結(jié)論?若能,用文字?jǐn)⑹瞿銡w納出的結(jié)論,并寫出已知、求證和證明過程;若不能,說明理由.

答案:
解析:

  (1)證明:如圖,分別過點(diǎn)A、C作AE⊥BD于E,CF⊥BD于F,則有

  S△OBC·OB·CF,S△OAD·OD·AE,

  S△OAB·OB·AE,S△OCD·OD·CF,

  ∴S△OBC·S△OAD·OB·OD·CF·AE,

  S△OAB·S△OCD·OB·OD·CF·AE,

  ∴S△OBC·S△OAD=S△OAB·S△OCD

  (2)結(jié)論:S△OBC·S△OAD=S△OAB·S△OCD

  證明:如圖,分別過點(diǎn)A、C作AE⊥DB交DB的延長(zhǎng)線于E,CF⊥BD于F,則有:

  S△OBC·OB·CF,S△OAD·OD·AE,

  S△OAB·OB·AE,S△OCD·OD·CF,

  ∴S△OBC·S△OAD·OB·OD·CF·AE,

  S△OAB·S△OCD·OB·OD·CF·AE,

  ∴S△OBC·S△OAD=S△OAB·S△OCD

  (3)答:能.

  從三角形的一個(gè)頂點(diǎn)與對(duì)邊上任意一點(diǎn)的連線上任取一點(diǎn),與三角形的另外兩個(gè)頂點(diǎn)的連線,將三角形分成四個(gè)小三角形,其中相對(duì)兩對(duì)三角形的面積之積相等.

  即:S△OBC·S△OAD=S△OAB·S△OCD

  已知:在△ABC中,D為AC上任一點(diǎn),O為BD上任一點(diǎn).

  求證:S△OBC·S△OAD=S△OAB·S△OCD

  證明:如圖,分別過點(diǎn)A、C,作AE⊥DB,交BD的延長(zhǎng)線于E,CF⊥BD于F,則有:

  S△OBC·OB·CF,S△OAD·OD·AE,

  S△OAB·OB·AE,S△OCD·OD·CF,

  ∴S△OBC·S△OAD·OB·OD·CF·AE,

  S△OAB·S△OCB·OB·OD·CF·AE,

  S△OBC·S△OAD=S△OAB·S△OCD


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

四邊形是大家最熟悉的圖形之一,我們已經(jīng)發(fā)現(xiàn)了它的許多性質(zhì).只要善于觀察、樂于探索,我們還會(huì)發(fā)現(xiàn)更多的結(jié)論.
(1)四邊形一條對(duì)角線上任意一點(diǎn)與另外兩個(gè)頂點(diǎn)的連線,將四邊形分成四個(gè)三角形(如圖①),其中相對(duì)的兩對(duì)三角形的面積之積相等.你能證明這個(gè)結(jié)論嗎?試試看.
已知:在四邊形ABCD中,O是對(duì)角線BD上任意一點(diǎn).(如圖①)
求證:S△OBC•S△OAD=S△OAB•S△OCD;
(2)在三角形中(如圖②),你能否歸納出類似的結(jié)論?若能,寫出你猜想的結(jié)論,并證明:若不能,說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年四川省成都市高新區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

四邊形是大家最熟悉的圖形之一,我們已經(jīng)發(fā)現(xiàn)了它的許多性質(zhì).只要善于觀察、樂于探索,我們還會(huì)發(fā)現(xiàn)更多的結(jié)論.
(1)四邊形一條對(duì)角線上任意一點(diǎn)與另外兩個(gè)頂點(diǎn)的連線,將四邊形分成四個(gè)三角形(如圖①),其中相對(duì)的兩對(duì)三角形的面積之積相等.你能證明這個(gè)結(jié)論嗎?試試看.
已知:在四邊形ABCD中,O是對(duì)角線BD上任意一點(diǎn).(如圖①)
求證:S△OBC•S△OAD=S△OAB•S△OCD;
(2)在三角形中(如圖②),你能否歸納出類似的結(jié)論?若能,寫出你猜想的結(jié)論,并證明:若不能,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年全國(guó)中考數(shù)學(xué)試題匯編《四邊形》(05)(解析版) 題型:解答題

(2004•青島)四邊形是大家最熟悉的圖形之一,我們已經(jīng)發(fā)現(xiàn)了它的許多性質(zhì).只要善于觀察、樂于探索,我們還會(huì)發(fā)現(xiàn)更多的結(jié)論.
(1)四邊形一條對(duì)角線上任意一點(diǎn)與另外兩個(gè)頂點(diǎn)的連線,將四邊形分成四個(gè)三角形(如圖①),其中相對(duì)的兩對(duì)三角形的面積之積相等.你能證明這個(gè)結(jié)論嗎?試試看.
已知:在四邊形ABCD中,O是對(duì)角線BD上任意一點(diǎn).(如圖①)
求證:S△OBC•S△OAD=S△OAB•S△OCD
(2)在三角形中(如圖②),你能否歸納出類似的結(jié)論?若能,寫出你猜想的結(jié)論,并證明:若不能,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年山東省青島市中考數(shù)學(xué)試卷(2)(解析版) 題型:解答題

(2004•青島)四邊形是大家最熟悉的圖形之一,我們已經(jīng)發(fā)現(xiàn)了它的許多性質(zhì).只要善于觀察、樂于探索,我們還會(huì)發(fā)現(xiàn)更多的結(jié)論.
(1)四邊形一條對(duì)角線上任意一點(diǎn)與另外兩個(gè)頂點(diǎn)的連線,將四邊形分成四個(gè)三角形(如圖①),其中相對(duì)的兩對(duì)三角形的面積之積相等.你能證明這個(gè)結(jié)論嗎?試試看.
已知:在四邊形ABCD中,O是對(duì)角線BD上任意一點(diǎn).(如圖①)
求證:S△OBC•S△OAD=S△OAB•S△OCD;
(2)在三角形中(如圖②),你能否歸納出類似的結(jié)論?若能,寫出你猜想的結(jié)論,并證明:若不能,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案