【題目】用兩種方法證明“直角三角形斜邊上的中線等于斜邊的一半”.
已知:如圖1,在Rt△ABC中,∠ACB=90°,CD是斜邊AB上的中線.
求證:CD= AB.
證法1:如圖2,在∠ACB的內(nèi)部作∠BCE=∠B,
CE與AB相交于點E.
∵∠BCE=∠B,
∴ .
∵∠BCE+∠ACE=90°,
∴∠B+∠ACE=90°.
又∵ ,
∴∠ACE=∠A.
∴EA=EC.
∴EA=EB=EC,
即CE是斜邊AB上的中線,且CE= AB.
又∵CD是斜邊AB上的中線,即CD與CE重合,
∴CD= AB.
請把證法1補充完整,并用不同的方法完成證法2.
【答案】EC=EB;∠A+∠B=90°
【解析】解:證法1:如圖2,
在∠ACB的內(nèi)部作∠BCE=∠B,
CE與AB相交于點E.
∵∠BCE=∠B,
∴EC=EB,
∵∠BCE+∠ACE=90°,
∴∠B+∠ACE=90°.
又∵∠A+∠B=90°,
∴∠ACE=∠A.
∴EA=EC.
∴EA=EB=EC,
即CE是斜邊AB上的中線,且CE= AB.
又∵CD是斜邊AB上的中線,即CD與CE重合,
∴CD= AB.
所以答案是:EC=EB;∠A+∠B=90°;
證法2:延長CD至點E,使得DE=CD,連接AE、BE.如圖3所示:
∵AD=DB,DE=CD.
∴四邊形ACBE是平行四邊形.
又∵∠ACB=90°,
∴四邊形ACBE是矩形.
∴AB=CE,
又∵CD= CE,
∴CD= AB.
【考點精析】解答此題的關(guān)鍵在于理解直角三角形斜邊上的中線的相關(guān)知識,掌握直角三角形斜邊上的中線等于斜邊的一半.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】.如圖①,在△ABC 中,D、E 分別是 AB、AC 上的點,AB=AC,AD=AE,然后將△ADE 繞點 A 順時針旋轉(zhuǎn)一定角度,連接 BD,CE,得到圖②,將 BD、CE 分別延長至 M、N,使 DM= BD,EN=CE,得到圖③,請解答下列問題:
(1)在圖②中,BD 與 CE 的數(shù)量關(guān)系是 ;
(2)在圖③中,猜想 AM 與 AN 的數(shù)量關(guān)系,∠MAN 與∠BAC 的數(shù)量關(guān)系,并證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為響應(yīng)國家要求中小學(xué)生每天鍛煉1小時的號召,某校開展了形式多樣的“陽光體育運動”活動,小明對某班同學(xué)參加鍛煉的情況進行了統(tǒng)計,并繪制了圖1和圖2的統(tǒng)計圖.請回答下列問題:
(1)該班共有多少名學(xué)生?
(2)求圖1中“乒乓球”部分的人數(shù),并在圖1中將“乒乓球”部分的圖形補充完整;
(3)求出扇形統(tǒng)計圖中表示“足球”的扇形的圓心角度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖1,△ABC是等腰直角三角形,∠BAC=90°,DE是經(jīng)過點A的直線,作BD⊥DE,CE⊥DE,
(1)求證:DE=BD+CE.
(2)如果是如圖2這個圖形,我們能得到什么結(jié)論?并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“震災(zāi)無情人有情”.民政局將全市為四川受災(zāi)地區(qū)捐贈的物資打包成件,其中帳篷和食品共320件,帳篷比食品多80件.
(1)求打包成件的帳篷和食品各多少件?
(2)現(xiàn)計劃租用甲、乙兩種貨車共8輛,一次性將這批帳篷和食品全部運往受災(zāi)地區(qū).已知甲種貨車最多可裝帳篷40件和食品10件,乙種貨車最多可裝帳篷和食品各20件.則民政局安排甲、乙兩種貨車時有幾種方案?請你幫助設(shè)計出來.
(3)在第(2)問的條件下,如果甲種貨車每輛需付運輸費4000元,乙種貨車每輛需付運輸費3600元.民政局應(yīng)選擇哪種方案可使運輸費最少?最少運輸費是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,∠BAC=50° ,D是BC的中點,以AC為腰向外作等腰直角△ACE,∠EAC=90°,連接BE,交AD于點F,交AC于點G.
(1)求∠AEB的度數(shù);
(2)求證:∠AEB=∠ACF;
(3)若AB=4,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,D為BC邊上一點.
(1)如圖①,在Rt△ABC中,∠C=90°,將△ABC沿著AD折疊,點C落在AB邊上.請用直尺和圓規(guī)作出點D(不寫作法,保留作圖痕跡);
(2)如圖②,將△ABC沿著過點D的直線折疊,點C落在AB邊上的E處.
①若DE⊥AB,垂足為E,請用直尺和圓規(guī)作出點D(不寫作法,保留作圖痕跡);
②若AB=4 ,BC=6,∠B=45°,則CD的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一位無線電愛好者把天線桿設(shè)在接收效果最佳的矩形屋頂之上.然后,他從桿頂?shù)轿蓓斔慕侵g安裝固定用的支撐線.有兩根相對的支撐線分別長7米和4米,另一根長1米,則最后一根的長度應(yīng)為( )
A. 8米 B. 9米 C. 10米 D. 12米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】荊州古城是聞名遐邇的歷史文化名城,“五一”期間相關(guān)部門對到荊州觀光游客的出行方式進行了隨機抽樣調(diào)查,整理后繪制了兩幅統(tǒng)計圖(尚不完整).根據(jù)圖中信息,下列結(jié)論錯誤的是( )
A. 本次抽樣調(diào)查的樣本容量是5000
B. 扇形圖中的m為10%
C. 樣本中選擇公共交通出行的有2500人
D. 若“五一”期間到荊州觀光的游客有50萬人,則選擇自駕方式出行的有25萬人
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com