【題目】填空完成推理過程:

如圖,BCE,AFE是直線,ABCD,∠1=2,∠3=4,求證ADBE

證明:∵ABCD(已知)

∴∠4=BAE 

∵∠3=4(已知)

∴∠3=   (等量代換)

∵∠1=2(已知)

∴∠1+CAF=2+CAF  

即∠BAF=CAD

∴∠3=   (等量代換)

ADBE  

【答案】兩直線平行,同位角相等;BAE;等式的性質(zhì);DAC;內(nèi)錯角相等,兩直線平行.

【解析】

根據(jù)已知條件和解題思路,利用平行線的性質(zhì)和判定填空.

解:ADBE,理由如下:

ABCD(已知),

∴∠4=∠BAE(兩直線平行,同位角相等);

∵∠3=∠4(已知),

∴∠3=∠BAE(等量代換);

∵∠1=∠2(已知),

∴∠1+∠CAF=∠2+∠CAF(等式的性質(zhì)),

即∠BAF=∠DAC,

∴∠3=∠DAC(等量代換),

ADBE(內(nèi)錯角相等,兩直線平行).

故答案是:兩直線平行,同位角相等;BAE;等式的性質(zhì);DAC;內(nèi)錯角相等,兩直線平行.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,方格紙中每個小正方形的邊長都是1個單位長度,RtABC的三個頂點A(-2,2),B(0,5),C(0,2).

(1)ABC以點C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,得到A1B1C,請畫出A1B1C的圖形.

(2)平移ABC,使點A的對應點A2坐標為(-2,-6),請畫出平移后對應的A2B2C2的圖形.

(3)若將A1B1C繞某一點旋轉(zhuǎn)可得到A2B2C2,請直接寫出旋轉(zhuǎn)中心的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某工廠需要在規(guī)定時間內(nèi)生產(chǎn)1400個某種零件,該工廠按一定速度加工5天后,發(fā)現(xiàn)按此速度加工下去會延期10天完工,于是又抽調(diào)了一批工人投入這種零件的生產(chǎn),使工作效率提高了50%,結(jié)果如期完成加工任務.

1)求該工廠前5天每天生產(chǎn)多少個這種零件;

2)求規(guī)定時間是多少天.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列事件中,必然事件是( )
A.拋擲1個均勻的骰子,出現(xiàn)6點向上
B.兩直線被第三條直線所截,同位角相等
C.366人中至少有2人的生日相同
D.實數(shù)的絕對值是非負數(shù)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,三角形ABC(記作△ABC)在方格中,方格紙中的每個小方格都是邊長為1個單位的正方形,三個頂點的坐標分別是A(-21),B(-3,-2),C1,-2),先將△ABC向上平移3個單位長度,再向右平移2個單位長度,得到A1B1C1

1)在圖中畫出△A1B1C1;

2)點A1,B1,C1的坐標分別為   、  、  ;

3)若y軸有一點P,使△PBC與△ABC面積相等,求出P點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】李老師為了了解所教班級學生完成數(shù)學課前預習的具體情況,對本班部分學生進行了為期半個月的跟蹤調(diào)查,他將調(diào)查結(jié)果分為四類,A:很好;B:較好;C:一般;D:較差.并將調(diào)查結(jié)果繪制成以下兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖解答下列問題:

(1)若D類男生有1名,請計算出C類女生的人數(shù),并將條形統(tǒng)計圖補充完整.
(2)為了共同進步,李老師想從被調(diào)查的A類和D類學生中各隨機選取一位同學進行“一幫一”互助學習,請用列表法或畫樹形圖的方法求出所選兩位同學恰好是兩位男同學的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,兩建筑物AB、CD的水平距離BC為60m,從A點測得D點的俯角α為30°,測得C點的俯角β為45°,求建筑物AB、CD的高度.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線C1:y=ax2+bx﹣ (a≠0)經(jīng)過點A(1,0)和B(﹣3,0).
(1)求拋物線C1的解析式,并寫出其頂點C的坐標.
(2)如圖1,把拋物線C1沿著直線AC方向平移到某處時得到拋物線C2 , 此時點A,C分別平移到點D,E處.設點F在拋物線C1上且在x軸的上方,若△DEF是以EF為底的等腰直角三角形,求點F的坐標.

(3)如圖2,在(2)的條件下,設點M是線段BC上一動點,EN⊥EM交直線BF于點N,點P為線段MN的中點,當點M從點B向點C運動時:①tan∠ENM的值如何變化?請說明理由;②點M到達點C時,直接寫出點P經(jīng)過的路線長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖在△ABCDAB上一點,DFAC于點E,AEEC,DEEF,則下列說法中:①∠ADEEFC②∠ADEECFFEC180°;③∠BBCF180°SABCS四邊形DBCF.正確的有(  )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

同步練習冊答案