【題目】在平面直角坐標(biāo)系xOy中,已知拋物線y=﹣+cx軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),交y軸的正半軸于點(diǎn)C,其頂點(diǎn)為M,MHx軸于點(diǎn)H,MAy軸于點(diǎn)NsinMOH=

1)求此拋物線的函數(shù)表達(dá)式;

2)過H的直線與y軸相交于點(diǎn)P,過OM兩點(diǎn)作直線PH的垂線,垂足分別為EF,若=時(shí),求點(diǎn)P的坐標(biāo);

3)將(1)中的拋物線沿y軸折疊,使點(diǎn)A落在點(diǎn)D處,連接MD,Q為(1)中的拋物線上的一動(dòng)點(diǎn),直線NQx軸于點(diǎn)G,當(dāng)Q點(diǎn)在拋物線上運(yùn)動(dòng)時(shí),是否存在點(diǎn)Q,使ANGADM相似?若存在,求出所有符合條件的直線QG的解析式;若不存在,請(qǐng)說(shuō)明理由.

【答案】1y=﹣+42P0,2P0,﹣2).3)存在,符合條件的所有直線QG的解析式為:y=4x+y=﹣x+

【解析】

試題分析:1)由拋物線y=﹣+cx軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),交y軸的正半軸于點(diǎn)C,其頂點(diǎn)為M,MHx軸于點(diǎn)HMAy軸于點(diǎn)N,sinMOH=,求出c的值,進(jìn)而求出拋物線方程;

2)如圖1,由OEPH,MFPH,MHOH,可證OEH∽△HFM,可知HE,HF的比例關(guān)系,求出P點(diǎn)坐標(biāo);

3)首先求出D點(diǎn)坐標(biāo),寫出直線MD的表達(dá)式,由兩直線平行,兩三角形相似,可得NGMD,直線QG解析式.

解:(1M為拋物線y=﹣+c的頂點(diǎn),

M2,c).

OH=2,MH=|c|

a0,且拋物線與x軸有交點(diǎn),

c0,

MH=c

sinMOH=,

=

OM=c,

OM2=OH2+MH2,

MH=c=4

M2,4),

拋物線的函數(shù)表達(dá)式為:y=﹣+4

2)如圖1,OEPH,MFPH,MHOH,

∴∠EHO=FMH,OEH=HFM

∴△OEH∽△HFM,

==,

=,

MF=HF,

∴∠OHP=FHM=45°

OP=OH=2,

P02).

如圖2,同理可得,P0﹣2).

3A﹣1,0),

D1,0),

M2,4),D10),

直線MD解析式:y=4x﹣4

ONMH,∴△AON∽△AHM,

===

AN=,ON=,N0,).

如圖3,若ANG∽△AMD,可得NGMD

直線QG解析式:y=4x+,

如圖4,若ANG∽△ADM,可得=

AG=

G,0),

QGy=﹣x+,

綜上所述,符合條件的所有直線QG的解析式為:y=4x+y=﹣x+

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】時(shí)代超市出售的三種品牌月餅袋上,分別標(biāo)有質(zhì)量為:(500±5)g、(500±10)g、(500±20)g的字樣,從中任意拿出兩袋,它們的質(zhì)量最多相差( )
A.10g
B.20g
C.30g
D.40g

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AB=8,BC=12,點(diǎn)EBC的中點(diǎn),連接AE,將ABE沿AE折疊,點(diǎn)B落在點(diǎn)F處,連接FC,則tanECF=

A B C D

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2013年1月1日新交通法規(guī)開始實(shí)施.為了解某社區(qū)居民遵守交通法規(guī)情況,小明隨機(jī)選取部分居民就“行人闖紅燈現(xiàn)象”進(jìn)行問卷調(diào)查,調(diào)查分為“A:從不闖紅燈;B:偶爾闖紅燈;C:經(jīng)常闖紅燈;D:其他”四種情況,并根據(jù)調(diào)查結(jié)果繪制出部分條形統(tǒng)計(jì)圖(如圖1)和部分扇形統(tǒng)計(jì)圖(如圖2).請(qǐng)根據(jù)圖中信息,解答下列問題:

(1)本次調(diào)查共選取名居民;

(2)求出扇形統(tǒng)計(jì)圖中“C”所對(duì)扇形的圓心角的度數(shù),并將條形統(tǒng)計(jì)圖補(bǔ)充完整;

(3)如果該社區(qū)共有居民1600人,估計(jì)有多少人從不闖紅燈?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一種袋裝大米的質(zhì)量標(biāo)識(shí)為“10±0.25千克”,則下列幾袋大米中合格的是( )

A. 9.70千克 B. 10.30千克 C. 10.51千克 D. 9.80千克

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC∽△DEF,相似比為3:1,且△DEF的周長(zhǎng)為18,則△ABC的周長(zhǎng)為(
A.3
B.2
C.6
D.54

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知一次函數(shù)與反比例函數(shù)的圖象交于點(diǎn)A(﹣4,﹣2)和B(a,4).

(1)求一次函數(shù)和反比例函數(shù)的表達(dá)式及點(diǎn)B的坐標(biāo);

(2)根據(jù)圖象回答,當(dāng)x在什么范圍內(nèi)時(shí),一次函數(shù)的值大于反比例函數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列各組線段中,能成比例的是(
A.3,6,7,9
B.2,5,6,8
C.3,6,9,18
D.1,2,3,4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】【問題背景】

(1)如圖1的圖形我們把它稱為“8字形”,請(qǐng)說(shuō)明

【簡(jiǎn)單應(yīng)用】

(2)閱讀下面的內(nèi)容,并解決后面的問題:如圖2, APCP分別平分∠BAD. BCD,若∠ABC=36°,∠ADC=16°,求∠P的度數(shù);

解:∵AP、CP分別平分∠BAD. BCD

∴∠1=∠2,∠3=∠4

由(1)的結(jié)論得:

①+②,得2∠P+∠2+∠3=∠1+∠4+∠B+D

∴∠P = (∠B+D)=26°.

【問題探究】如圖3,直線AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,若∠ABC=36°,∠ADC=16°,請(qǐng)猜想的度數(shù),并說(shuō)明理由.

【拓展延伸】

① 在圖4中,若設(shè)∠C=α,∠B=β,∠CAP=CAB,∠CDP=CDB,試問∠P與∠C、∠B之間的數(shù)量關(guān)系為:________________(用α、β表示∠P),

②在圖5中,AP平分∠BAD,CP平分∠BCD的外角∠BCE,猜想∠P與∠B、∠D的關(guān)系,直接寫出結(jié)論______________________

查看答案和解析>>

同步練習(xí)冊(cè)答案