精英家教網 > 初中數學 > 題目詳情
跳繩時,繩甩到最高處時的形狀是拋物線.正在甩繩的甲.乙兩名同學拿繩的手間距AB為6米,到地面的距離AO和BD均為0.9米,身高為1.4米的小麗站在距點O的水平距離為1米的點F處,繩子甩到最高處時剛好通過她的頭頂點E.以點O為原點建立如圖所示的平面直角坐標系, 設此拋物線的解析式為y=ax2+bx+0.9.
(1)求該拋物線的解析式 .

(2)如果小華站在OD之間,且離點O的距離為3米,當繩子甩到最高處時剛好通過他的頭頂,小華的身高為               ;
(3)如果身高為1.4米的小麗站在OD之間,且離點O的距離為t米, 繩子甩到最高處時超過她的頭頂,請結合圖像,寫出t的取值范圍                  
(1)拋物線的解析式是y=﹣0.1x2+0.6x+0.9;(2)小華的身高是1.8米;(3)1<t<5.

試題分析:(1)已知拋物線解析式,求其中的待定系數,選定拋物線上兩點E(1,1.4),B(6,0.9)坐標代入即可;
(2)小華站在OD之間,且離點O的距離為3米,即OF=3,求當x=3時,函數值;
(3)實質上就是求y=1.4時,對應的x的兩個值,就是t的取值范圍.
試題解析:(1)由題意得點E(1,1.4),B(6,0.9),代入y=ax2+bx+0.9得,
解得,
∴所求的拋物線的解析式是y=﹣0.1x2+0.6x+0.9;
(2)把x=3代入y=﹣0.1x2+0.6x+0.9得
y=﹣0.1×32+0.6×3+0.9=1.8
∴小華的身高是1.8米;
(3)當y=1.4時,﹣0.1x2+0.6x+0.9=1.4,
解得x1=1,x2=5,
∴1<t<5.
考點:二次函數的應用.
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:解答題

已知直線y=x+6交x軸于點A,交y軸于點C,經過A和原點O的拋物線y=ax2+bx(a<0)的頂點B在直線AC上.

(1)求拋物線的函數關系式;
(2)以B點為圓心,以AB為半徑作⊙B,將⊙B沿x軸翻折得到⊙D,試判斷直線AC與⊙D的位置關系,并說明理由;
(3)若E為⊙B優(yōu)弧上一動點,連結AE、OE,問在拋物線上是否存在一點M,使∠MOA︰∠AEO=2︰3,若存在,試求出點M的坐標;若不存在,試說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

拋物線頂點坐標為點C(1,4),交x軸于點A(3,0),交y軸于點B.
(1)求此拋物線的解析式;
(2)拋物線上是否存在點P,使,若存在,求出P點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

已知一個二次函數的頂點A的坐標為(1,0),且圖像經過點B(2,3).
(1)求這個二次函數的解析式.
(2)設圖像與y軸的交點為C,記,試用表示(直接寫出答案)

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

已知二次函數,下列說法:①當時,的增大而減小;②若圖象與軸有交點,則;③當時,不等式的解集是;④若將圖象向上平移1個單位,再向左平移3個單位后過點,則.其中正確的有    (填正確答案的序號).

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

在平面直角坐標系中,現(xiàn)將一塊等腰直角三角板ABC放在第二象限,斜靠在兩坐上,且點A(0,2),點C(,0),如圖所示:拋物線經過點B。

(1)求點B的坐標;
(2)求拋物線的解析式;
(3)在拋物線上是否還存在點P(點B除外),使△ACP仍然是以AC為直角邊的等腰直角三角形?若存在,求所有點P的坐標;若不存在,請說明理由。

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

拋物線的最小值是           

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

根據下列表格中二次函數y=ax2+bx+c的自變量與函數值的對應值,判斷方程ax2+b x+c=0(a≠0)的一個解的范圍是(  。

6.17
6.18
6.19
6.20
y=ax2+bx+c
-0.03
-0.01


A.6<x<6.17        B.6.17<x<6.18
C.6.18<x<6.19    D.6.19<x<6.20

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

將拋物線y=(x+2)2-3的圖像向上平移5個單位,得到函數解析式為            

查看答案和解析>>

同步練習冊答案