【題目】已知:如圖,在半徑為4的⊙O中,AB、CD是兩條直徑,M為OB的中點,CM的延長線交⊙O于點E,且EM>MC.連接DE,DE=.
(1)求證:AMMB=EMMC;
(2)求EM的長;
(3)求sin∠EOB的值.
【答案】(1)證明見解析(2)4(3)
【解析】(1)連接A、C,E、B點,那么只需要求出△AMC和△EMB相似,即可求出結(jié)論,根據(jù)圓周角定理可推出它們的對應(yīng)角相等,即可得△AMC∽△EMB;
(2)根據(jù)圓周角定理,結(jié)合勾股定理,可以推出EC的長度,根據(jù)已知條件推出AM、BM的長度,然后結(jié)合(1)的結(jié)論,很容易就可求出EM的長度;
(3)過點E作EF⊥AB,垂足為點F,通過作輔助線,解直角三角形,結(jié)合已知條件和(1)(2)所求的值,可推出Rt△EOF各邊的長度,根據(jù)銳角三角函數(shù)的定義,便可求得sin∠EOB的值.
【題型】解答題
【結(jié)束】
21
【題目】為大力弘揚“奉獻(xiàn)、友愛、互助、進(jìn)步”的志愿服務(wù)精神,傳播“奉獻(xiàn)他人、提升自我”的志愿服務(wù)理念,合肥市某中學(xué)利用周末時間開展了“助老助殘、社區(qū)服務(wù)、生態(tài)環(huán)保、網(wǎng)絡(luò)文明”四個志愿服務(wù)活動(每人只參加一個活動),九年級某班全班同學(xué)都參加了志愿服務(wù),班長為了解志愿服務(wù)的情況,收集整理數(shù)據(jù)后,繪制以下不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:
(1)請把折線統(tǒng)計圖補充完整;
(2)求扇形統(tǒng)計圖中,網(wǎng)絡(luò)文明部分對應(yīng)的圓心角的度數(shù);
(3)小明和小麗參加了志愿服務(wù)活動,請用樹狀圖或列表法求出他們參加同一服務(wù)活動的概率.
【答案】(1)見解析;(2)45°;(3)
【解析】試題分析:(1)根據(jù)參加生態(tài)環(huán)保的人數(shù)以及百分比求得總?cè)藬?shù),用總?cè)藬?shù)乘以“社區(qū)服務(wù)”百分比求得其人數(shù),即可解決問題;
(2)根據(jù)圓心角=360°×百分比,計算即可;
(3)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與他們參加同一服務(wù)活動的情況,再利用概率公式求解即可求得答案.
試題解析:(1)該班全部人數(shù):12÷25%=48人.
社區(qū)服務(wù)的人數(shù)為48×50%=24,
補全折線統(tǒng)計如圖所示:
(2)網(wǎng)絡(luò)文明部分對應(yīng)的圓心角的度數(shù)為360°×=45°;
(3)分別用A,B,C,D表示“社區(qū)服務(wù)、助老助殘、生態(tài)環(huán)保、網(wǎng)絡(luò)文明”四個服務(wù)活動,
畫樹狀圖得:
∵共有16種等可能的結(jié)果,他們參加同一服務(wù)活動的有4種情況,
∴他們參加同一服務(wù)活動的概率為.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在數(shù)軸上,點A表示1,現(xiàn)將點A沿數(shù)軸做如下移動:第一次將點A向左移動3個單位長度到達(dá)點A1,第2次將點A1向右平移6個單位長度到達(dá)點A2,第3次將點A2向左移動9個單位長度到達(dá)點A3…則第6次移動到點A6時,點A6在數(shù)軸上對應(yīng)的實數(shù)是_____;按照這種規(guī)律移動下去,第2017次移動到點A2017時,A2017在數(shù)軸上對應(yīng)的實數(shù)是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解:
如圖1,在四邊形ABCD的邊AB上任取一點E(點E不與點A、點B重合),分別連接ED,EC,可以把四邊形ABCD分成三個三角形,如果其中有兩個三角形相似,我們就把E叫做四邊形ABCD的邊AB上的相似點;如果這三個三角形都相似,我們就把E叫做四邊形ABCD的邊AB上的強相似點.
解決問題:
(1)如圖1,∠A=∠B=∠DEC=55°,試判斷點E是否是四邊形ABCD的邊AB上的相似點,并說明理由;
(2)如圖2,在矩形ABCD中,AB=5,BC=2,且A,B,C,D四點均在正方形網(wǎng)格(網(wǎng)格中每個小正方形的邊長為1)的格點(即每個小正方形的頂點)上,試在圖2中畫出矩形ABCD的邊AB上的一個強相似點E;
拓展探究:
(3)如圖3,將矩形ABCD沿CM折疊,使點D落在AB邊上的點E處.若點E恰好是四邊形ABCM的邊AB上的一個強相似點,試探究AB和BC的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】矩形紙片ABCD中,已知AD=8,AB=6,E是邊BC上的點,以AE為折痕折疊紙片,使點B落在點F處,連接FC,當(dāng)△EFC為直角三角形時,BE的長為 .
【答案】3或6
【解析】試題分析:
由題意可知有兩種情況,見圖1與圖2;
圖1:當(dāng)點F在對角線AC上時,∠EFC=90°,
∵∠AFE=∠B=90°,∠EFC=90°,
∴點A、F、C共線,
∵矩形ABCD的邊AD=8,
∴BC=AD=8,
在Rt△ABC中,AC==10,
設(shè)BE=x,則CE=BC﹣BE=8﹣x,
由翻折的性質(zhì)得,AF=AB=6,EF=BE=x,
∴CF=AC﹣AF=10﹣6=4,
在Rt△CEF中,EF2+CF2=CE2,
即x2+42=(8﹣x)2,
解得x=3,
即BE=3;
圖2:當(dāng)點F落在AD邊上時,∠CEF=90°,
由翻折的性質(zhì)得,∠AEB=∠AEF=×90°=45°,
∴四邊形ABEF是正方形,
∴BE=AB=6,
綜上所述,BE的長為3或6.
故答案為:3或6.
考點:1、軸對稱(翻折變換);2、勾股定理
【題型】填空題
【結(jié)束】
15
【題目】計算:()﹣2﹣+(﹣4)0﹣cos45°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知數(shù)軸上點A表示的數(shù)為6,B是數(shù)軸上一點,且AB=10.動點P從點O出發(fā),以每秒6個單位長度的速度沿數(shù)軸向右勻速運動,設(shè)運動時間為t(t>0)秒.
(1)寫出數(shù)軸上點B表示的數(shù) ;當(dāng)t=3時,OP=
(2)動點R從點B出發(fā),以每秒8個單位長度的速度沿數(shù)軸向右勻速運動,若點P,R同時出發(fā),問點R運動多少秒時追上點P?
(3)動點R從點B出發(fā),以每秒8個單位長度的速度沿數(shù)軸向右勻速運動,若點P,R同時出發(fā),問點R運動多少秒時PR相距2個單位長度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于任意四個有理數(shù)a,b,c,d,可以組成兩個有理數(shù)對(a,b)與(c,d).我們規(guī)定:
(a,b)★(c,d)=bc-ad.
例如:(1,2)★(3,4)=2×3-1×4=2.
根據(jù)上述規(guī)定解決下列問題:
(1)有理數(shù)對(2,-3)★(3,-2)=_______;
(2)若有理數(shù)對(-3,2x-1)★(1,x+1)=7,則x=_______;
(3)當(dāng)滿足等式(-3,2x-1)★(k,x+k)=5+2k的x是整數(shù)時,求整數(shù)k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在□ABCD中,點E、F、G、H分別在邊AB、BC、CD、DA上,AE=CG,AH=CF.
(1)求證:△AEH≌△CGF;
(2)若EG平分∠HEF,求證:四邊形EFGH是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某研究性學(xué)習(xí)小組進(jìn)行了探究活動.如圖,已知一架竹梯AB斜靠在墻角MON處,竹梯AB=13m,梯子底端離墻角的距離BO=5m.
(1)求這個梯子頂端A距地面有多高;
(2)如果梯子的頂端A下滑4 m到點C,那么梯子的底部B在水平方向上滑動的距離BD=4 m嗎?為什么?
(3)亮亮在活動中發(fā)現(xiàn)無論梯子怎么滑動,在滑動的過程中梯子上總有一個定點到墻角O的距離始終是不變的定值,會思考問題的你能說出這個點并說明其中的道理嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在學(xué)習(xí)了《展開與折疊》這一課后,明白了很多幾何體都能展開成平面圖形.于是他在家用剪刀展開了一個長方體紙盒,可是一不小心多剪了一條棱,把紙盒剪成了兩部分,即圖中的①和②.根據(jù)你所學(xué)的知識,回答下列問題:
(1)小明總共剪開了 條棱.
(2)現(xiàn)在小明想將剪斷的②重新粘貼到①上去,而且經(jīng)過折疊以后,仍然可以還原成一個長方體紙盒,你認(rèn)為他應(yīng)該將剪斷的紙條粘貼到①中的什么位置?請你幫助小明在圖上補 全.(請在備用圖中畫出所有可能)
(3)小明說:他所剪的所有棱中,最長的一條棱是最短的一條棱的4倍.現(xiàn)在已知這個長方體紙盒的底面是一個正方形,并且這個長方體紙盒所有棱長的和是720cm,求這個長方體紙盒的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com