【題目】在美化校園的活動中,某興趣小組想借助如圖所示的直角墻角(兩邊足夠長),用28m長的籬笆圍成一個矩形花園ABCD(籬笆只圍AB,BC兩邊),設AB=xm.若在P處有一棵樹與墻CD,AD的距離分別是15m和6m,要將這棵樹圍在花園內(含邊界,不考慮樹的粗細),則花園面積S的最大值為_____m2

【答案】195

【解析】

分析題意, AB=xm,BC=(28-x)m,根據(jù)題意可得S=x(28-x)= =,接下來利用二次函數(shù)求最值的方法即可得到本題答案.

解:設AB=xm, BC=(28-x)m,

由題意可得出: S=x(28-x)==

P處有一棵樹與墻CD, AD的距離分別是15m6m

6x28,1528-x28

6x13

x=13, S取到最大值為: S最大值==195.

故花園面積S的最大值為195平方米.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a≠0)的頂點坐標為(2,﹣1),圖象與y軸交于點C(0,3),與x軸交于A、B兩點.

(1)求拋物線的解析式;

(2)設拋物線對稱軸與直線BC交于點D,連接AC、AD,求△ACD的面積;

(3)點E為直線BC上的任意一點,過點Ex軸的垂線與拋物線交于點F,問是否存在點E使△DEF為直角三角形?若存在,求出點E坐標,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某小區(qū)有一塊長為30 m,寬為24 m的矩形空地,計劃在其中修建兩塊相同的矩形綠地,它們的面積之和為480 m2,兩塊綠地之間及周邊有寬度相等的人行通道,則人行通道的寬度為________m.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某社區(qū)準備在甲乙兩位射箭愛好者中選出一人參加集訓,兩人各射了5箭,小宇根據(jù)他們的成績(單位:環(huán))繪制了如下尚不完整的統(tǒng)計表:

1

2

3

4

5

甲成績

9

4

7

a

6

乙成績

7

5

7

4

7

1)若甲成績的平均數(shù)為6環(huán),求a的值;

2)若甲成績的方差為3.6,請計算乙成績的方差并說明誰的成績更穩(wěn)定?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,中,,于點,于點,交于點,連接.下列結論:①;②圖中共有8對相似三角形;③.其中正確的是______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,⊙O的直徑AB10cm,弦AC6cm,∠ACB的平分線交⊙OD,求BC,AD,BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,張老師在黑板上畫出了一個,其中,讓同學們進行探究.

1)探究一:

如圖2,小明以為邊在內部作等邊,連接,請直接寫出的度數(shù)_____________;

2)探究二:

如圖3,小彬在(1)的條件下,又以為邊作等邊,連接.判斷的數(shù)量關系;并說明理由;

3)探究三:

如圖3,小聰在(2)的條件下,連接,若,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:在平面直角坐標系中,圖形G上點P(x,y)的縱坐標y與其橫坐標x的差yx稱為P點的“坐標差”,而圖形G上所有點的“坐標差”中的最大值稱為圖形G的“特征值”

(1)①點A(1,3) 的“坐標差”為 。

②拋物線y=x2+3x+3的“特征值”為 。

(2)某二次函數(shù)y=x2+bx+c(c≠0) 的“特征值”為1,點B(m,0)與點C分別是此二次函數(shù)的圖象與x軸和y軸的交點,且點B與點C的“坐標差”相等。

①直接寫出m= (用含c的式子表示)

②求此二次函數(shù)的表達式。

(3)如圖,在平面直角坐標系xOy中,以M(2,3)為圓心,2為半徑的圓與直線y=x相交于點D、E請直接寫出⊙M的“特征值”為 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知四邊形ABCD與四邊形A′B′C′D′是位似圖形,且它們的對應邊的比為3:4,則四邊形ABCD與四邊形A′B′C′D′的周長之比為______,面積之比為______.

查看答案和解析>>

同步練習冊答案