【題目】如圖,拋物線與軸交于、兩點,與交于點,且,點是軸上的一個動點,當的值最小時,的值是( )
A. B. C. D.
【答案】B
【解析】
作出點C關于x軸的對稱點C′,連接C′D交x軸于點M,根據(jù)軸對稱性及兩點之間線段最短可知此時CM+DM最;
由ED∥y軸得到△C′OM∽△DEM,進而得到=,將各線段的長代入該式進行求解即可.
∵點A(-1,0)在拋物線y=x2+bx-2上,
∴×(-1)2+b×(-1)-2=0.
解得b=-.
∴拋物線的解析式為:y=x2-x-2,
配方得:y= (x-)2-,
∴頂點D的坐標為(,-).
作出點C關于x軸的對稱點C′,則C′(0,2),OC′=2,連接C′D交x軸于點M,
根據(jù)軸對稱性及兩點之間線段最短,可知CM+DM的值最小.
∵ED∥y軸,
∴△C′OM∽△DEM,
∴=.
∵OM=m,EM=-m,OC′=2,ED=,=,
∴=.
解得m=.
故答案選B.
科目:初中數(shù)學 來源: 題型:
【題目】將一塊直角三角板DEF放置在銳角△ABC上,使得該三角板的兩條直角邊DE、DF恰好分別經(jīng)過點B、C.
(1)如圖①,若∠A=40°時,點D在△ABC內(nèi),則∠ABC+∠ACB= 度,∠DBC+∠DCB= 度,∠ABD+∠ACD= 度;
(2)如圖②,改變直角三角板DEF的位置,使點D在△ABC內(nèi),請?zhí)骄俊?/span>ABD+∠ACD與∠A之間存在怎樣的數(shù)量關系,并驗證你的結論.
(3)如圖③,改變直角三角板DEF的位置,使點D在△ABC外,且在AB邊的左側,直接寫出∠ABD、∠ACD、∠A三者之間存在的數(shù)量關系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在⊙O中,AB為直徑,OC⊥AB,弦CD與OB交于點F,在AB的延長線上有點E,且EF=ED.
(1)求證:DE是⊙O的切線;
(2)若tanA=,探究線段AB和BE之間的數(shù)量關系,并證明;
(3)在(2)的條件下,若OF=1,求圓O的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,OC是∠AOB的角平分線,P是OC上一點,PD⊥OA,PE⊥OB,垂足分別為D,E.F是OC上另一點,連接DF,EF.求證:DF=EF.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形放置在平面直角坐標系中,,所在直線為軸,所在直線為軸,反比例函數(shù)的圖象經(jīng)過的中點,并且與交于點,已知.則的長等于( )
A. 2.5 B. 2 C. 1.5 D. 1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線經(jīng)過點,及原點,頂點為.
(1)求拋物線的解析式:
(2)試判斷的形式,并說明理由:
(3)是拋物線上第二象限內(nèi)的動點,過點作軸,垂足為,是否存在點使得以點、、為頂點的三角形與相似?若存在,求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】京廣高速鐵路工程指揮部,要對某路段工程進行招標,接到了甲、乙兩個工程隊的投標書.從投標書中得知:甲隊單獨完成這項工程所需天數(shù)是乙隊單獨完成這項工程所需天數(shù)的;若由甲隊先做10天,剩下的工程再由甲、乙兩隊合作30天完成.
(1)求甲、乙兩隊單獨完成這項工程各需多少天?
(2)已知甲隊每天的施工費用為8.4萬元,乙隊每天的施工費用為5.6萬元.工程預算的施工費用為500萬元.為縮短工期并高效完成工程,擬安排預算的施工費用是否夠用?若不夠用,需追加預算多少萬元?請給出你的判斷并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC的角平分線CD、BE相交于F,∠A=90°,EG∥BC,且CG⊥EG于G,下列結論:
①∠CEG=2∠DCB;②∠DFB= ∠CGE;③∠ADC=∠GCD;④CA平分∠BCG.其中正確的個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com