【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),拋物線y=ax2+2xa+c經(jīng)過A(﹣4,0),B(0,4)兩點(diǎn),與x軸交于另一點(diǎn)C,直線y=x+5與x軸交于點(diǎn)D,與y軸交于點(diǎn)E.
(1)求拋物線的解析式;
(2)點(diǎn)P是第二象限拋物線上的一個(gè)動(dòng)點(diǎn),連接EP,過點(diǎn)E作EP的垂線l,在l上截取線段EF,使EF=EP,且點(diǎn)F在第一象限,過點(diǎn)F作FM⊥x軸于點(diǎn)M,設(shè)點(diǎn)P的橫坐標(biāo)為t,線段FM的長度為d,求d與t之間的函數(shù)關(guān)系式(不要求寫出自變量t的取值范圍);
(3)在(2)的條件下,過點(diǎn)E作EH⊥ED交MF的延長線于點(diǎn)H,連接DH,點(diǎn)G為DH的中點(diǎn),當(dāng)直線PG經(jīng)過AC的中點(diǎn)Q時(shí),求點(diǎn)F的坐標(biāo).
【答案】(1);(2)d=5+t;(3)F.
【解析】
試題分析:(1)直接把A、B坐標(biāo)代入求出a、c得值即可;(2)分別過P、F向y軸作垂線,垂足分別為A′、B′,過P作PN⊥x軸,垂足為N,易證△PEA′≌△EFB′,可得出d=FM=OE﹣EB′,再代入可求得解析式;(3)先求得F、H的坐標(biāo),發(fā)現(xiàn)點(diǎn)P和點(diǎn)H的縱坐標(biāo)相等,則PH與x軸平行,根據(jù)平行線截線段成比例定理可得G也是PQ的中點(diǎn),由此表示出點(diǎn)G的坐標(biāo)并列式,求出t的值并取舍,計(jì)算出點(diǎn)F的坐標(biāo).
試題解析:(1)由題意得,解得,∴拋物線解析式為;(2)分別過P、F向y軸作垂線,垂足分別為A′、B′,過P作PN⊥x軸,垂足為N,當(dāng)x=0時(shí),y=5,∴E(0,5),∴OE=5,∵∠PEO+∠OEF=90°,∠PEO+∠EPA′=90°,∴∠EPA′=∠OEF,∵PE=EF,∠EA′P=∠EB′F=90°,∴△PEA′≌△EFB′,∴PA′=EB′=﹣t,∴d=FM=OB′=OE﹣EB′=5﹣(﹣t)=5+t;
(3)如圖,由直線DE的解析式為:y=x+5,∵EH⊥ED,∴直線EH的解析式為:y=﹣x+5,
∴FB′=A′E=5﹣(﹣t2﹣t+4)=t2+t+1,∴F(t2+t+1,5+t),∴點(diǎn)H的橫坐標(biāo)為:t2+t+1,
y=﹣t2﹣t﹣1+5=﹣t2﹣t+4,∴H(t2+t+1,﹣t2﹣t+4),∵G是DH的中點(diǎn),∴G(),即G(t2+t﹣2,﹣t2﹣t+2),∴PH∥x軸,∵DG=GH,∴PG=GQ,
∴,解得t=,∵P在第二象限,∴t<0,∴t=,∴F().
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】多項(xiàng)式y(tǒng)-xy+2的項(xiàng)數(shù)、次數(shù)分別是( )
A. 3,2 B. 3,4
C. 3,3 D. 2,3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,對(duì)稱軸為直線x=的拋物線經(jīng)過點(diǎn)A(6,0)和B(0,﹣4).
(1)求拋物線解析式及頂點(diǎn)坐標(biāo);
(2)設(shè)點(diǎn)E(x,y)是拋物線上一動(dòng)點(diǎn),且位于第一象限,四邊形OEAF是以O(shè)A為對(duì)角線的平行四邊形,求平行四邊形OEAF的面積S與x之間的函數(shù)關(guān)系式;
(3)當(dāng)(2)中的平行四邊形OEAF的面積為24時(shí),請(qǐng)判斷平行四邊形OEAF是否為菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下表是書法小組某次測(cè)驗(yàn)的成績統(tǒng)計(jì)表.則成績的眾數(shù)是( )
成績/分 | 7 | 8 | 9 | 10 |
人數(shù)/人 | 4 | 3 | 2 | 1 |
A.1B.4C.7D.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)M(x,﹣4)與點(diǎn)N(2,y)關(guān)于y軸對(duì)稱,則x﹣y的值為( 。
A. ﹣6 B. 6 C. 2 D. ﹣2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方形OABC的OA邊在x軸的正半軸上,OC在y軸的正半軸上,拋物線y=ax2+bx經(jīng)過點(diǎn)B(1,4)和點(diǎn)E(3,0)兩點(diǎn).
(1)求拋物線的解析式;
(2)若點(diǎn)D在線段OC上,且BD⊥DE,BD=DE,求D點(diǎn)的坐標(biāo);
(3)在條件(2)下,在拋物線的對(duì)稱軸上找一點(diǎn)M,使得△BDM的周長為最小,并求△BDM周長的最小值及此時(shí)點(diǎn)M的坐標(biāo);
(4)在條件(2)下,從B點(diǎn)到E點(diǎn)這段拋物線的圖象上,是否存在一個(gè)點(diǎn)P,使得△PAD的面積最大?若存在,請(qǐng)求出△PAD面積的最大值及此時(shí)P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com