【題目】如圖,△ABC中,AB=AC,∠A=36°,D是AC上一點(diǎn),且BD=BC,過點(diǎn)D分別作DE⊥AB,DF⊥BC,垂足分別是E,F,下列結(jié)論:①BD是∠ABC的平分線;②D是AC的中點(diǎn);③DE垂直平分AB;④AB=BC+CD;其中正確的結(jié)論是_____(填序號).
【答案】①③④
【解析】
根據(jù)等腰三角形的性質(zhì)可得∠ABC=∠C=∠BDC=72°,利用外角性質(zhì)可得∠ABD=36°,可得∠ABD=∠A=∠DBC=36°,根據(jù)等腰三角形的性質(zhì)對各選項(xiàng)逐一判定即可得答案.
①∵∠A=36°,AB=AC,
∴∠ABC=∠C=72°,
∵BD=BC,
∴∠BDC=∠C=72°,
∵∠BDC=∠A+∠ABD,
∴∠ABD=36°,
∴∠ABD=∠CBD=36°,即BD是∠ABC的平分線,①正確.
②∵∠A+∠ABD=36°,
∴AD=BD,
∵BD≠CD,
∴AD≠CD,故②錯(cuò)誤;
③∵∠ABD=∠A=36°,
∴AD=BD,
∵DE⊥AB,
∴AE=BE,
∴DE垂直平分AB,③正確;
④由①③可知,AD=BD=BC,
∵AB=AC,
∴AB=AD+CD=BC+CD,④正確;
綜上所述,正確的結(jié)論有①③④,
故答案為:①③④.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知直線與反比例函數(shù)的圖像交于點(diǎn)A,且點(diǎn)A的橫坐標(biāo)為1,點(diǎn)B是x軸正半軸上一點(diǎn),且⊥.
(1)求反比例函數(shù)的解析式;
(2)求點(diǎn)B的坐標(biāo);
(3)先在的內(nèi)部求作點(diǎn)P,使點(diǎn)P到的兩邊OA、OB的距離相等,且PA=PB.(不寫作法,保留作圖痕跡,在圖上標(biāo)注清楚點(diǎn)P)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠A=105°.
(1)試求作一點(diǎn)P,使得點(diǎn)P到B、C兩點(diǎn)的距離相等,并且到∠ABC兩邊的距離相等(尺規(guī)作圖,不寫作法,保留作圖痕跡).
(2)在(1)的條件下,若∠BCP=15°,則∠ACB的度數(shù)為 °.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】益馬高速通車后,將桃江馬跡塘的農(nóng)產(chǎn)品運(yùn)往益陽的運(yùn)輸成本大大降低。馬跡塘一農(nóng)戶需要將A,B兩種農(nóng)產(chǎn)品定期運(yùn)往益陽某加工廠,每次運(yùn)輸A,B產(chǎn)品的件數(shù)不變,原來每運(yùn)一次的運(yùn)費(fèi)是1200元,現(xiàn)在每運(yùn)一次的運(yùn)費(fèi)比原來減少了300元,A,B兩種產(chǎn)品原來的運(yùn)費(fèi)和現(xiàn)在的運(yùn)費(fèi)(單位:元∕件)如下表所示:
品種 | A | B |
原來的運(yùn)費(fèi) | 45 | 25 |
現(xiàn)在的運(yùn)費(fèi) | 30 | 20 |
(1)求每次運(yùn)輸?shù)霓r(nóng)產(chǎn)品中A,B產(chǎn)品各有多少件?
(2)由于該農(nóng)戶誠實(shí)守信,產(chǎn)品質(zhì)量好,加工廠決定提高該農(nóng)戶的供貨量,每次運(yùn)送的總件數(shù)增加8件,但總件數(shù)中B產(chǎn)品的件數(shù)不得超過A產(chǎn)品件數(shù)的2倍,問產(chǎn)品件數(shù)增加后,每次運(yùn)費(fèi)最少需要多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,花叢中有一路燈桿AB,在燈光下,大華在D點(diǎn)處的影長DE=3 m,沿BD方向行走到達(dá)G點(diǎn),DG=5 m,這時(shí)大華的影長GH=4 m如果大華的身高為2 m,求路燈桿AB的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,菱形ABCD,分別延長AB,CB到點(diǎn)F,E,使得BF=BA,BE=BC,連接AE,EF,F(xiàn)C,CA.
(1)求證:四邊形AEFC為矩形;
(2)連接DE交AB于點(diǎn)O,如果DE⊥AB,AB=4,求DE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com