解:(1)已知點(diǎn)A(-1,-1)在已知拋物線上,
則(k
2-1)+2(k-2)+1=-1,
即k
2+2k-3=0,
解得 k
1=1,k
2=-3,…分
當(dāng)k=1時(shí),函數(shù)y=(k
2-1)x
2-2(k-2)x+1為一次函數(shù),不合題意,舍去,
當(dāng)k=-3時(shí),拋物線的解析式為y=8x
2+10x+1,…
由拋物線的解析式知其對(duì)稱軸為x=-
=-
=-
,
即x=-
;…
(2)存在.
理由如下:∵點(diǎn)B與點(diǎn)A關(guān)于y=(k
2-1)x
2-2(k-2)x+1對(duì)稱,且A(-1,-1),
∴B(-
,-1),…
當(dāng)直線過B(-
,-1)且與y軸平行時(shí),此直線與拋物線只有一個(gè)交點(diǎn),
此時(shí)的直線為x=-
,…
當(dāng)直線過B(-
,-1)且不與y軸平行時(shí),
設(shè)直線y=mx+n與拋物線y=8x
2+10x+1只交于一點(diǎn)B,
則-
m+n=-1,…
即m-4n-4=0,①
把y=mx+n代入y=8x
2+10x+1,得8x
2+10x+1=mx+n,…
即8x
2+(10-m)x+1-n=0,…
由8x
2+(10-m)x+1-n=0,△=0,得(10-m)
2-32(1-n)=0,②
由①,②得
故所求的直線為y=6x+
,
綜上所述,存在與拋物線只交于一點(diǎn)B的直線x=-
或y=6x+
.…
分析:(1)把點(diǎn)A坐標(biāo)代入拋物線解析式,計(jì)算求出k的值,再根據(jù)拋物線對(duì)稱軸x=-
進(jìn)行計(jì)算即可得解;
(2)先根據(jù)對(duì)稱性求出點(diǎn)B的坐標(biāo),再分直線過點(diǎn)B且與y軸平行時(shí),與拋物線只有一個(gè)交點(diǎn),直線過點(diǎn)B不與y軸平行時(shí),設(shè)直線解析式為y=mx+n,把點(diǎn)B的坐標(biāo)代入解析式得到一個(gè)關(guān)于m、n的方程,再與拋物線解析式聯(lián)立消掉y,得到關(guān)于x的一元二次方程,根據(jù)只有一個(gè)交點(diǎn),利用根的判別式△=0,列式整理得到一個(gè)關(guān)于m、n的方程,兩個(gè)方程聯(lián)立求解即可得到m、n的值,從而求出直線解析式.
點(diǎn)評(píng):本題考查了二次函數(shù)的性質(zhì),拋物線的對(duì)稱軸的求解,拋物線與直線的交點(diǎn)問題,以及根的判別式的應(yīng)用,本題主要要分情況討論.