當(dāng)k>0時(shí),y=kx+1與y=的圖象是
[ ]
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
已知直線y=kx+6(k<0)分別交x軸、y軸于A、B兩點(diǎn),線段OA上有一動(dòng)點(diǎn)P由原點(diǎn)O向點(diǎn)A運(yùn)動(dòng),速度為每秒2個(gè)單位長(zhǎng)度,過點(diǎn)P作x軸的垂線交直線AB于點(diǎn)C,設(shè)運(yùn)動(dòng)時(shí)間為t秒.
。1)當(dāng)k=-1時(shí),線段OA上另有一動(dòng)點(diǎn)Q由點(diǎn)A向點(diǎn)O運(yùn)動(dòng),它與點(diǎn)P以相同速度同時(shí)出發(fā),當(dāng)點(diǎn)P到達(dá)點(diǎn)A時(shí)兩點(diǎn)同時(shí)停止運(yùn)動(dòng)(如圖1).
①直接寫出t=1秒時(shí)C、Q兩點(diǎn)的坐標(biāo);
、谌粢訯、C、A為頂點(diǎn)的三角形與△AOB相似,求t的值.
。2)當(dāng)時(shí),設(shè)以C為頂點(diǎn)的拋物線y=(x+m)2+n與直線AB的另一交點(diǎn)為D(如圖2),①求CD的長(zhǎng); ②設(shè)△COD的OC邊上的高為h,當(dāng)t為何值時(shí),h的值最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011屆珠海市香洲區(qū)初三中考模擬考試數(shù)學(xué)卷 題型:單選題
一次函數(shù)y=kx-k,y隨x的增大而減小,那么反比例函數(shù)y=滿足()
A.當(dāng)x>0時(shí),y>0 | B.在每個(gè)象限內(nèi),y隨x的增大而減小 |
C.圖象分布在第一、三象限 | D.圖象分布在第二、四象限 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2015屆江蘇昆山兵希中學(xué)初二上第二次階段測(cè)試數(shù)學(xué)卷(解析版) 題型:解答題
如圖,直線y=kx-2與x軸、y軸分別交于B、C兩點(diǎn),OB:OC=.
(1)求B點(diǎn)的坐標(biāo)和k的值.
(2)若點(diǎn)A(x,y)是第一象限內(nèi)的直線y=kx-2上的一個(gè)動(dòng)點(diǎn),當(dāng)點(diǎn)A運(yùn)動(dòng)過程中,①試寫出△AOB的面積S與x的函數(shù)關(guān)系式;②探索:當(dāng)點(diǎn)A運(yùn)動(dòng)到什么位置時(shí),△AOB的面積是1.③在②成立的情況下,x軸上是否存在一點(diǎn)P,使△POA是等腰三角形.若存在,請(qǐng)寫出滿足條件的所有P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012屆山東省濟(jì)寧地區(qū)九年級(jí)第一學(xué)期期中考試數(shù)學(xué)試卷 題型:解答題
在平面直角坐標(biāo)系xOy中,二次函數(shù)y=mx2+(m-3)x-3(m>0)的圖象與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C.
1.求點(diǎn)A的坐標(biāo);
2.當(dāng)∠ABC=45°時(shí),求m的值;
3.已知一次函數(shù)y=kx+b,點(diǎn)P(n,0)是x軸上的一個(gè)動(dòng)點(diǎn),在(2)的條件下,過點(diǎn)P垂直于x軸的直線交這個(gè)一次函數(shù)的圖象于點(diǎn)M,交二次函數(shù)y=mx2+(m-3)x-3(m>0)的圖象于點(diǎn)N.若只有當(dāng)-2<n<2時(shí),點(diǎn)M位于點(diǎn)N的上方,求這個(gè)一次函數(shù)的解析式.(友情提示:自畫圖形)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com