【題目】如圖,在平面直角坐標(biāo)系xOy中,菱形ABCD的四個頂點都在格點上,且點A、B的坐標(biāo)分別為請解答下列問題:

(1)寫出點C、D的坐標(biāo);

(2)畫出菱形ABCD關(guān)于y軸對稱的四邊形,并寫出點的坐標(biāo);

(3)畫出菱形ABCD關(guān)于原點O對稱的四邊形,并寫出點的坐標(biāo).

【答案】1C(5,2), D3,3);(2)見解析;(3)見解析.

【解析】

1)根據(jù)圖象即可得到結(jié)論;

2)根據(jù)關(guān)于y軸對稱的點的坐標(biāo)特點畫出四邊形A1B1C1D1即可;

3)根據(jù)關(guān)于原點O對稱的點的坐標(biāo)特點即可得到四邊形ABCD關(guān)于原點O對稱的四邊形A2B2C2D2

1C52),D3,3);

2)如圖所示,四邊形A1B1C1D1即為所求;A1-1,2);

3)如圖所示,四邊形A2B2C2D2即為所求;B2-3,-1).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小琴的父母承包了一塊荒山地種植一批梨樹,今年收獲一批金溪密梨,小琴的父母打算以m元/斤的零售價銷售5000斤密梨;剩余的5000(m1)斤密犁以比零售價低1元的批發(fā)價批給外地客商,預(yù)計總共可賺得55 000元的毛利潤.

1)求小琴的父母今年共收獲金溪密梨多少斤?

2)若零售金溪密梨平均每天可售出200斤,每斤盈利2元.為了加快銷售和獲得較好的售價,采取了降價措施,發(fā)現(xiàn)銷售單價每降低0.1元,平均每天可多售出40斤,應(yīng)降價多少元?每天銷售利潤為600元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直徑為10的⊙A經(jīng)過點C(0,5)和點O (0,0),By軸右側(cè)⊙A優(yōu)弧上一點,則∠OBC 的余弦值為 _________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線與x軸交于點A(﹣1,0),B(3,0),與y軸交于點C(0,﹣3),拋物線頂點為D,連接AC,BC,CD,BD,點P是x軸下方拋物線上的一個動點,作PM⊥x軸于點M,設(shè)點M的橫坐標(biāo)為m.

(1)求拋物線的解析式及點D的坐標(biāo);

(2)試探究是否存在這樣的點P,使得以P,M,B為頂點的三角形與△BCD相似?若存在,請求出點P的坐標(biāo);若不存在,請說明理由;

(3)如圖2,PM交線段BC于點Q,過點P作PE∥AC交x軸于點E,交線段BC于點F,請用含m的代數(shù)式表示線段QF的長,并求出當(dāng)m為何值時QF有最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】類比、轉(zhuǎn)化、從特殊到一般等思想方法,在數(shù)學(xué)學(xué)習(xí)和研究中經(jīng)常用到,如下是一個案例,請補充完整.

原題:如圖1,在ABCD中,點EBC邊上的中點,點F是線段AE上一點,BF的延長線交射線CD于點G,若=3,求的值.

1)嘗試探究

在圖1中,過點EEHABBG于點H,則ABEH的數(shù)量關(guān)系是 ,CGEH的數(shù)量關(guān)系是 的值是

2)類比延伸

如圖2,在原題的條件下,若=mm≠0),則的值是 (用含m的代數(shù)式表示),試寫出解答過程.

3)拓展遷移

如圖3,梯形ABCD中,DCAB,點EBC延長線上一點,AEBD相交于點F,若=a,=ba0,b0),則的值是 (用含ab的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校射擊隊從甲、乙、丙、丁四人中選拔一人參加市運動會射擊比賽,在選拔比賽中,每人射擊10次,他們10次成績的平均數(shù)及方差如下表所示:

平均數(shù)/環(huán)

9.5

9.5

9.6

9.6

方差/環(huán)2

5.1

4.7

4.5

5.1

請你根據(jù)表中數(shù)據(jù)選一人參加比賽,最合適的人選是(   )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AH是圓O的直徑,AE平分FAH,交O于點E,過點E的直線FGAF,垂足為F,B為直徑OH上一點,點E、F分別在矩形ABCD的邊BC和CD上.

(1)求證:直線FG是O的切線;

(2)若AD=8,EB=5,求O的直徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線軸只有一個交點,以下四個結(jié)論:①拋物線的對稱軸在軸左側(cè);②關(guān)于的方程有實數(shù)根;③;④的最大值為1.其中結(jié)論正確的為(

A.①②③B.③④C.①③D.①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊中,DBC延長線上一點,,E,F分別是BC,AD的中點,若,則線段EF的長是____.

查看答案和解析>>

同步練習(xí)冊答案