【題目】已知x-2y=3,則代數(shù)式6-2x+4y的值為( 。
A.0
B.-1
C.-3
D.3

【答案】A
【解析】∵x-2y=3,
∴6-2x+4y=6-2(x-2y)=6-2×3=6-6=0
故選:A
【考點精析】掌握代數(shù)式求值是解答本題的根本,需要知道求代數(shù)式的值,一般是先將代數(shù)式化簡,然后再將字母的取值代入;求代數(shù)式的值,有時求不出其字母的值,需要利用技巧,“整體”代入.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,每個小方格都是邊長為1的正方形,以O點為坐標(biāo)原點建立平面直角坐標(biāo)系.

(1)畫出四邊形OABC關(guān)于y軸對稱的四邊形OA1B1C1,并寫出點B1的坐標(biāo)是__________

(2)畫出四邊形OABC繞點O順時針方向旋轉(zhuǎn)90°后得到的四邊形OA2B2C2;連接OB,求出OB旋轉(zhuǎn)到OB2所掃過部分圖形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 如圖在∠AOB的兩邊上截取AO=BO,CO=DO,連接AD,BC交于點P,那么在結(jié)論①△AOD≌△BOC ;②△APC≌△BPD;③點P在∠AOB的平分線上.其中正確的是 ( )

A.只有① B. 只有② C. 只有①② D.①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了增強學(xué)生的安全意識,組織全校學(xué)生參加安全知識競賽,賽后組委會隨機抽查部分學(xué)生的成績進行統(tǒng)計(由高到低分四個等級).根據(jù)調(diào)査的數(shù)據(jù)繪制成如下的條形統(tǒng)計圖和扇形統(tǒng)計圖.

根據(jù)以上不完整的統(tǒng)計圖提供的信息,解答下列問題:
(1)組委會共抽査了名學(xué)生的安全知識競賽成績,扇形統(tǒng)計圖中B級所占的百分比 b=扇形統(tǒng)計圖中.C級所對應(yīng)的圓心角的度數(shù)是度.
(2)補全條形統(tǒng)計圖:
(3)若該校共有800名學(xué)生,請估算該校安全知識競賽成績獲得A級的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知10m=4,10n=5,求103m2n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知a3m=3,b3n=2,求(a2m)3+(bn)3a2m·bn·a4m·b2n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,BC=1,CBD=60°,點E是AB邊上一動點(不與點A,B重合),連接DE,過點D作DFDE交BC的延長線于點F,連接EF交CD于點G.

(1)求證:ADE∽△CDF;

(2)求DEF的度數(shù);

(3)設(shè)BE的長為x,BEF的面積為y.

求y關(guān)于x的函數(shù)關(guān)系式,并求出當(dāng)x為何值時,y有最大值;

當(dāng)y為最大值時,連接BG,請判斷此時四邊形BGDE的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,EF∥AD,∠1=∠2.說明:∠DGA+∠BAC=180°.請將說明過程填寫完成.
解:∵EF∥AD,(已知)
∴∠2= . (
又∵∠1=∠2,(
∴∠1=∠3,(
∴AB∥ , (
∴∠DGA+∠BAC=180°.(

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ab互為相反數(shù),cd互為倒數(shù),e為絕對值最小的數(shù),求式子2004(a+b)+cd+e的值.

查看答案和解析>>

同步練習(xí)冊答案