【題目】如圖1,AB=12ACAB,BDAB,AC=BD=8。P在線段AB上以每秒2個單位的速度由點A向點B運動,同時,點Q在線段BD上由B點向點D運動。它們的運動時間為t(s).

1)若點Q的運動速度與點P的運動速度相等,當(dāng)t=2時,ACPBPQ是否全等,請說明理由,并判斷此時線段PC和線段PQ的位置關(guān)系;

2)如圖2,將圖1中的ACABBDAB改為CAB=DBA=60°”,其他條件不變。設(shè)點Q的運動速度為每秒x個單位,是否存在實數(shù)x,使得ACPBPQ全等?若存在,求出相應(yīng)的x,t的值;若不存在,請說明理由。

【答案】1ACPBPQ全等,PCPQ,理由見解析;(2)存在實數(shù)x,使得ACPBPQ全等,,

【解析】

1)利用HL證得RtPACRtQBP,得出∠APC=PQB,進(jìn)一步得出∠PQB+QPB=APC+QPB=90°,得出結(jié)論即可;

2)由ACP≌△BQP,分兩種情況:①AC=BQ,AP=BP,②AC=BQ,AP=BP,建立方程組求得答案即可.

1)解:ACPBPQ全等,PCPQ,理由如下:

當(dāng)t=2時,AP=BQ=2×2=4,BP=AB-AP=12-4=8=AC,

ACABBDAB,∴∠PAB=PBQ=90°

RtPACRtQBP中,

RtPACRtQBP,

∴∠APC=PQB,

∵∠PQB+QPB=90°

∴∠APC+QPB=90°,

PCPQ.

2)解:存在實數(shù)x,使得△ACP與△BPQ全等,理由如下:

若△ACP≌△BQP,則AC=BQAP=BP,

,解得;

若△ACP≌△BPQ,則AC=BP,AP=BO

,解得.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,

(1)如圖①,以點為直角頂點,為腰在右側(cè)作等腰,過點的延長線于點.求證:

(2)如圖②,以為底邊在左側(cè)作等腰,連接,求的度數(shù).

(3)如圖③,中,,垂足為點,以為邊在左側(cè)作等邊,連接,,,的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(問題原型)如圖1,在四邊形ABCD中,,E、F分別為AC、BC的中點,連結(jié)EF,試說明:

(探究)如圖2,在問題原型的條件下,當(dāng)AC平分,時,求的大。

(應(yīng)用)如圖3,在問題原型的條件下,當(dāng),且四邊形CDEF是菱形時,直接寫出四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,平分.

1)若為線段上的一個點,過點交線段的延長線于點

①若,,則  ;

②猜想、之間的數(shù)量關(guān)系,并給出證明.

2)若在線段的延長線上,過點交直線于點.請你做出示意圖,直接寫出的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,點P從點A開始,沿AB向點B的速度移動,點QB點開始沿BC的速度移動,如果P、Q分別從A、B同時出發(fā):

幾秒后四邊形APQC的面積是31平方厘米;

若用S表示四邊形APQC的面積,在經(jīng)過多長時間S取得最小值?并求出最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,已知∠Aα

1)如圖1,∠ABC、∠ACB的平分線相交于點D

①當(dāng)α70°時,∠BDC度數(shù)=   度(直接寫出結(jié)果);

②∠BDC的度數(shù)為   (用含α的代數(shù)式表示);

2)如圖2,若∠ABC的平分線與∠ACE角平分線交于點F,求∠BFC的度數(shù)(用含α的代數(shù)式表示).

3)在(2)的條件下,將△FBC以直線BC為對稱軸翻折得到△GBC,∠GBC的角平分線與∠GCB的角平分線交于點M(如圖3),求∠BMC的度數(shù)(用含α的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為4,∠DAC的平分線交DC于點E,若點P,Q分別是AD和AE上的動點,則DQ+PQ的最小值是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),平面直角坐標(biāo)系中,點A、B分別在x、y軸上,點B的坐標(biāo)為(0,1),∠BAO=30°.

1)求AB的長度;

2)以AB為一邊作等邊△ABE,作OA的垂直平分線MNAB的垂線AD于點,求證:BD=OE;

3)在(2)的條件下,連接DEABF,求證:FDE的中點.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,,,,,動點M從點B出發(fā)沿線段BC以每秒2個單位長度的速度向終點C運動,動點N同時從點C出發(fā)沿線段CD以每秒1個單位長度的速度向終點D運動.

設(shè)運動的時間為t

BC的長.

當(dāng)時,求t的值.

設(shè)的面積為,試確定t的函數(shù)關(guān)系式.

在運動過程中,是否存在某一時刻t,使65?若存在,求出t的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案