【題目】某花園的護欄都是用直徑的半圓形條鋼組制而成,且每增加一個半圓形條鋼,半圓護欄長度增加,( )設半圓形條鋼的總個數為(為正整數),護欄總長為.
()當時,用的代數式表示.
()若護欄總長度為,當時,所用半圓形條鋼的個數.
()若護欄的總長度不變,則當時,用了個半圓形條鋼,當時,用了個半圓形條鋼,請用含的代數式表示.
科目:初中數學 來源: 題型:
【題目】如果關于x的一元二次方程ax2+bx+c=0有兩個實數根,且其中一個根為另一個根的2倍,則稱這樣的方程為“倍根方程”.
(1)請問一元二次方程x2﹣3x+2=0是倍根方程嗎?如果是,請說明理由.
(2)若一元二次方程ax2+bx﹣6=0是倍根方程,且方程有一個根為2,求a、b的值?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知AB⊥AD,AC⊥AE,AB=AD,AC=AE,BC分別交AD、DE于點G、F,AC與DE交于點H.求證:
(1)△ABC≌△ADE;
(2)BC⊥DE.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在一個矩形停車場MNGE中,矩形ABCD是一輛機動車停放的車位示意圖,經測量得AB=5.4米,BC=2.4米,AF=1.8米,HF⊥AB.其中HF是另一車位的一邊,所有車位尺寸一樣,并按圖示并列劃定.
(1)求路寬EG;
(2)若停車場的長EM=85米,求這個停車場的停車車位數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數y=ax+b的圖象與反比例函數y=的圖象交于一、三象限內的A、B兩點,與x軸交于C點,點A的坐標為(2,m),點B的坐標為(n,﹣2),tan∠BOC= .
(1)求該反比例函數和一次函數的解析式.
(2)求△BOC的面積.
(3)P是x軸上的點,且△PAC的面積與△BOC的面積相等,求P點的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商店需要購進一批電視機和洗衣機,根據市場調查,決定電視機進貨量不少于洗衣機進貨量的一半.電視機與洗衣機的進價和售價如下表:
類 別 | 電視機 | 洗衣機 |
進價(元/臺) | 1 800 | 1 500 |
售價(元/臺) | 2 000 | 1 600 |
計劃購進電視機和洗衣機共 100 臺,商店最多可籌集資金161 800 元.
(1)請你幫助商店算一算有多少種進貨方案(不考慮除進價之外的其他費用);
(2)哪種進貨方案待商店銷售購進的電視機與洗衣機完畢后獲得的利潤最多?并求出最大的利潤(利潤=售價-進價).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com