【題目】如圖,點(diǎn)D、E分別在線段AB、AC上且∠ABC=∠AED , 若DE=4,AE=5,BC=8,則AB的長(zhǎng)為( 。
A.
B.10
C.
D.
【答案】B
【解析】解答:∵∠ABC=∠AED , ∠A=∠A , ∴ADE∽△ACB ,
∴ = ,
∵DE=4,AE=5,BC=8,
∴AB=10,
故選:B .
分析:根據(jù)已知∠ABC=∠AED , ∠A=∠A , 證明△ADE∽△ACB , 根據(jù)相似三角形的性質(zhì),列出比例式,代入已知數(shù)據(jù)求出AB的長(zhǎng).
【考點(diǎn)精析】利用相似三角形的判定與性質(zhì)對(duì)題目進(jìn)行判斷即可得到答案,需要熟知相似三角形的一切對(duì)應(yīng)線段(對(duì)應(yīng)高、對(duì)應(yīng)中線、對(duì)應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長(zhǎng)的比等于相似比;相似三角形面積的比等于相似比的平方.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,E為BC邊上的一點(diǎn),連結(jié)AE、BD且AE=AB.
(1)求證:∠ABE=∠EAD;
(2)若∠AEB=2∠ADB,求證:四邊形ABCD是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知甲、乙兩種原料中均含有A元素,其含量及每噸原料的購(gòu)買單價(jià)如下表所示:
A元素含量 | 單價(jià)(萬(wàn)元/噸) | |
甲原料 | 5% | 2.5 |
乙原料 | 8% | 6 |
已知用甲原料提取每千克A元素要排放廢氣1噸,用乙原料提取每千克A元素要排放廢氣0.5噸,若某廠要提取A元素20千克,并要求廢氣排放不超過(guò)16噸,問(wèn):該廠購(gòu)買這兩種原料的費(fèi)用最少是多少萬(wàn)元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知線段a、b、c滿足a:b:c=3:2:6,且a+2b+c=26.
(1)求a、b、c的值;
(2)若線段x是線段a、b的比例中項(xiàng),求x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,為了估算河的寬度,我們可以在河對(duì)岸選定一個(gè)目標(biāo)點(diǎn)P , 在近岸取點(diǎn)Q和S , 使點(diǎn)P、Q、S共線且直線PS與河垂直,接著再過(guò)點(diǎn)S且與PS垂直的直線a上選擇適當(dāng)?shù)狞c(diǎn)T , 確定PT與過(guò)點(diǎn)Q且垂直PS的直線b的交點(diǎn)R . 如果測(cè)得QS=45m , ST=90m , QR=60m , 求河的寬度PQ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AD⊥BC于D , 下列條件:①∠B+∠DAC=90°;②∠B=∠DAC;③ = ;④AB2=BDBC . 其中一定能夠判定△ABC是直角三角形的有( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC和△ECD均為等邊三角形,B、C、D三點(diǎn)在一直線上,AD、BE相交于點(diǎn)F,DF=3,AF=4,則線段FE的長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC是等邊三角形,點(diǎn)D、E分別在BC、AC上,且BD=CE , AD與BE相交于點(diǎn)F .
(1)試說(shuō)明△ABD≌△BCE;
(2)△EAF與△EBA相似嗎?說(shuō)說(shuō)你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,反比例函數(shù)y1= 的圖象與一次函數(shù)y2=ax+b的圖象交于點(diǎn)A(1,3)和B(﹣3,m).
(1)求反比例函數(shù)y1= 和一次函數(shù)y2=ax+b的表達(dá)式;
(2)點(diǎn)C 是坐標(biāo)平面內(nèi)一點(diǎn),BC∥x 軸,AD⊥BC 交直線BC 于點(diǎn)D,連接AC.若AC= CD,求點(diǎn)C的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com