當(dāng)自變量x=________時,函數(shù)y=數(shù)學(xué)公式x+1與y=3x-4的值相等.

2
分析:根據(jù)已知,可得x+1=3x-4,解關(guān)于x的一元一次方程即可.
解答:∵函數(shù)y=x+1與y=3x-4的函數(shù)值相等,
x+1=3x-4,
解得x=2.
故答案是2.
點評:本題考查了函數(shù)值,解題的關(guān)鍵是根據(jù)函數(shù)值相等列出方程.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

先閱讀下面材料,再回答問題.
一般地,如果函數(shù)y的自變量x在a<x<b范圍內(nèi),對于任意x1,x2,當(dāng)a<x1<x2<b時,總是有y1<y2(yn是與xn對應(yīng)的函數(shù)值),那么就說函數(shù)y在a<x<b范圍內(nèi)是增函數(shù).
例如:函數(shù)y=x2在正實數(shù)范圍內(nèi)是增函數(shù).
證明:在正實數(shù)范圍內(nèi)任取x1,x2,若x1<x2,
則y1-y2=x12-x22=( x1-x2)( x1+x2
因為x1>0,x2>0,x1<x2
所以x1+x2>0,x1-x2<0,( x1-x2)( x1+x2)<0
即y1-y2<0,亦即y1<y2,也就是當(dāng)x1<x2時,y1<y2
所以函數(shù)y=x2在正實數(shù)范圍內(nèi)是增函數(shù).
問題:
(1)下列函數(shù)中.①y=-2x(x為全體實數(shù));②數(shù)學(xué)公式(x>0);③數(shù)學(xué)公式(x>0);在給定自變量x的取值范圍內(nèi),是增函數(shù)的有______.
(2)對于函數(shù)y=x2-2x+1,當(dāng)自變量x______時,函數(shù)值y隨x的增大而增大.
(3)說明函數(shù)y=-x2+4x,當(dāng)x<2時是增函數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年浙江寧波七中九年級10月月考數(shù)學(xué)試卷(解析版) 題型:選擇題

已知拋物線,當(dāng)自變量取兩個不同的數(shù)值  時,函數(shù)值相等,則當(dāng)自變量時的函數(shù)值與(         )

A.  時,函數(shù)值相等            B. 時,函數(shù)值相等

C. 時,函數(shù)值相等                D. 時,函數(shù)值相等

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

二次函數(shù)y=x2-2x-3中,當(dāng)自變量x______時,函數(shù)值y隨x的增大而增大.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

先閱讀下面材料,再回答問題.
一般地,如果函數(shù)y的自變量x在a<x<b范圍內(nèi),對于任意x1,x2,當(dāng)a<x1<x2<b時,總是有y1<y2(yn是與xn對應(yīng)的函數(shù)值),那么就說函數(shù)y在a<x<b范圍內(nèi)是增函數(shù).
例如:函數(shù)y=x2在正實數(shù)范圍內(nèi)是增函數(shù).
證明:在正實數(shù)范圍內(nèi)任取x1,x2,若x1<x2,
則y1-y2=x12-x22=( x1-x2)( x1+x2
因為x1>0,x2>0,x1<x2
所以x1+x2>0,x1-x2<0,( x1-x2)( x1+x2)<0
即y1-y2<0,亦即y1<y2,也就是當(dāng)x1<x2時,y1<y2
所以函數(shù)y=x2在正實數(shù)范圍內(nèi)是增函數(shù).
問題:
(1)下列函數(shù)中.①y=-2x(x為全體實數(shù));②y=-
2
x
(x>0);③y=
1
x
(x>0);在給定自變量x的取值范圍內(nèi),是增函數(shù)的有______.
(2)對于函數(shù)y=x2-2x+1,當(dāng)自變量x______時,函數(shù)值y隨x的增大而增大.
(3)說明函數(shù)y=-x2+4x,當(dāng)x<2時是增函數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008-2009學(xué)年九年級第一學(xué)期數(shù)學(xué)一至三章階段性測試(解析版) 題型:填空題

二次函數(shù)y=x2-2x-3中,當(dāng)自變量x    時,函數(shù)值y隨x的增大而增大.

查看答案和解析>>

同步練習(xí)冊答案