如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),邊長為6的正三角形OAB的OA邊在x軸的正半軸上,BC是正三角形OAB的高.點(diǎn)P、Q同時(shí)從點(diǎn)O出發(fā),點(diǎn)P以1 單位/s的速度
沿O→B→A向點(diǎn)A勻速運(yùn)動(dòng),點(diǎn)Q以1 單位/s的速度沿x軸的正半軸方向勻速運(yùn)動(dòng).當(dāng)P點(diǎn)到達(dá)點(diǎn)A時(shí)Q也隨之停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為x秒(0<x≤12).
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)點(diǎn)P、Q運(yùn)動(dòng)到直線PQ與邊OB垂直時(shí),求點(diǎn)P運(yùn)動(dòng)的時(shí)間x的值;
(3)若△OPQ與△OBC重疊部分的面積為S(平方單位),求S與x的函數(shù)關(guān)系式;
(4)若6<x<12時(shí),求點(diǎn)P、Q距離的最小值;并求出P、Q的距離最小時(shí)點(diǎn)P的坐標(biāo).