【題目】通過對代數(shù)式的適當(dāng)變形,求出代數(shù)式的值.
若x+y=4,xy=3,求x2+y2,(x﹣y)2的值.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖①,在矩形ABCD中,AB=5,AD=,AE⊥BD,垂足是E.點F是點E關(guān)于AB的對稱點,連接AF、BF.
(1)求AE和BE的長;
(2)若將△ABF沿著射線BD方向平移,設(shè)平移的距離為m(平移距離指點B沿BD方向所經(jīng)過的線段長度).當(dāng)點F分別平移到線段AB、AD上時,直接寫出相應(yīng)的m的值.
(3)如圖②,將△ABF繞點B順時針旋轉(zhuǎn)一個角α(0°<α<180°),記旋轉(zhuǎn)中的△ABF為△A′BF′,在旋轉(zhuǎn)過程中,設(shè)A′F′所在的直線與直線AD交于點P,與直線BD交于點Q.是否存在這樣的P、Q兩點,使△DPQ為等腰三角形?若存在,求出此時DQ的長;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點P( x, y1)與Q (x, y2)分別是兩個函數(shù)圖象C1與C2上的任一點. 當(dāng)a ≤ x ≤ b時,有-1 ≤ y1 - y2 ≤ 1成立,則稱這兩個函數(shù)在a ≤ x ≤ b上是“相鄰函數(shù)”,否則稱它們在a ≤ x ≤ b上是“非相鄰函數(shù)”.
例如,點P(x, y1)與Q (x, y2)分別是兩個函數(shù)y = 3x+1與y = 2x - 1圖象上的任一點,當(dāng)-3 ≤ x ≤ -1時,y1 - y2 = (3x + 1) - (2x - 1) = x + 2,通過構(gòu)造函數(shù)y = x + 2并研究該函數(shù)在-3 ≤ x ≤ -1上的性質(zhì),得到該函數(shù)值的范圍是-1 ≤ y ≤ 1,所以-1 ≤ y1 - y2 ≤ 1成立,因此這兩個函數(shù)在-3 ≤ x ≤ -1上是“相鄰函數(shù)”.
(1)判斷函數(shù)y = 3x + 2與y = 2x + 1在-2 ≤ x≤ 0上是否為“相鄰函數(shù)”,說明理由;
(2)若函數(shù)y = x2 - x與y = x - a在0 ≤ x ≤ 2上是“相鄰函數(shù)”,求a的取值范圍;
(3)若函數(shù)y =與y =-2x + 4在1 ≤ x ≤ 2上是“相鄰函數(shù)”,直接寫出a的最大值與最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把拋物線y=-x2+2的圖象繞原點旋轉(zhuǎn)180°,所得的拋物線的函數(shù)關(guān)系是( )
A. y=x2+2B. y=-x2+2C. y=-x2-2D. y=x2-2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)場去年種植了10畝地的南瓜,畝產(chǎn)量為2000kg,根據(jù)市場需要,今年該農(nóng)場擴大了種植面積,并且全部種植了高產(chǎn)的新品種南瓜,已知南瓜種植面積的增長率是畝產(chǎn)量的增長率的2倍,今年南瓜的總產(chǎn)量為60000kg,求南瓜畝產(chǎn)量的增長率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某區(qū)教育局為了解今年九年級學(xué)生體育測試情況,隨機抽查了某班學(xué)生的體育測試成績?yōu)闃颖,?/span>A、B、C、D四個等級進行統(tǒng)計,并將統(tǒng)計結(jié)果繪制成如下的統(tǒng)計圖,請你結(jié)合圖中所給信息解答下列問題:
說明:A級:90分~100分;B級:75分~89分;C級:60分~74分;D級:60分以下
(1)樣本中D級的學(xué)生人數(shù)占全班學(xué)生人數(shù)的百分比是 ;
(2)扇形統(tǒng)計圖中A級所在的扇形的圓心角度數(shù)是 ;
(3)請把條形統(tǒng)計圖補充完整;
(4)若該校九年級有500名學(xué)生,請你用此樣本估計體育測試中A級和B級的學(xué)生人數(shù)之和.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c與x軸交于A、B兩點,B點坐標(biāo)為(3,0),與y軸交于點C(0,﹣3)
(1)求拋物線的解析式;
(2)點P在拋物線位于第四象限的部分上運動,當(dāng)△BCP的面積最大時,求點P的坐標(biāo)和△BCP的最大面積.
(3)當(dāng)△BCP的面積最大時,在拋物線上是否點Q(異于點P),使△BCQ的面積等于△BCP,若存在,求出點Q的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com