如圖,△ABC中,AB=AC=2,BC邊上有10個(gè)不同的點(diǎn)P1,P2,…P10,記Mi=APi2+PiB•PiC(i=1,2,…,10),那么M1+M2+…+M10的值為


  1. A.
    4
  2. B.
    14
  3. C.
    40
  4. D.
    不能確定
C
分析:作AD⊥BC于D.根據(jù)勾股定理,得APi2=AD2+DPi2=AD2+(BD-BPi2=AD2+BD2-2BD•BPi+BPi2,PiB•PiC=PiB•(BC-PiB)=2BD•BPi-BPi2,從而求得Mi=AD2+BD2,即可求解.
解答:解:作AD⊥BC于D,則BC=2BD=2CD.
根據(jù)勾股定理,得
APi2=AD2+DPi2=AD2+(BD-BPi2=AD2+BD2-2BD•BPi+BPi2
又PiB•PiC=PiB•(BC-PiB)=2BD•BPi-BPi2,
∴Mi=AD2+BD2=AB2=4,
∴M1+M2+…+M10=4×10=40.
故選C.
點(diǎn)評(píng):此題主要運(yùn)用了勾股定理和等腰三角形三線合一的性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

26、已知:如圖,△ABC中,點(diǎn)D在AC的延長(zhǎng)線上,CE是∠DCB的角平分線,且CE∥AB.
求證:∠A=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

27、已知:如圖,△ABC中,∠BAC=60°,D、E兩點(diǎn)在直線BC上,連接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

27、如圖,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求證:∠ANM=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,則∠C的大小是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知,如圖,△ABC中,點(diǎn)D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度數(shù);
(2)若畫∠DAC的平分線AE交BC于點(diǎn)E,則AE與BC有什么位置關(guān)系,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案