【題目】如圖,A,B是⊙O上的兩點,C是⊙O上不與AB重合的任意一點.如果∠AOB140°,那么∠ACB的度數(shù)為___

【答案】70°或110°.

【解析】

分點C在優(yōu)弧上和劣弧上兩種情況,根據(jù)圓周角定理及圓內接四邊形的性質求出∠ACB的度數(shù)即可.

如圖1,當點C在優(yōu)弧ACB上時,

∵∠ACB和∠AOB分別是所對的圓周角和圓心角,

∴∠ACBAOB70°

如圖2,當點C在劣弧AB上時,在優(yōu)弧AB上取一點D,連接AD、BD,

∵∠ADB和∠AOB分別是所對的圓周角和圓心角,

∴∠ADBAOB70°,

∵四邊形ACBD是⊙O的內接四邊形,

∴∠ADB+ACB180°,

∴∠ACB110°

綜上所述:∠ACB的度數(shù)為70°110°

故答案為70°110°

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,點E在邊BC上,EFAEAD于點F,若AB2BC7,BE5,則FD的長度為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點P是圓O直徑CA延長線上的一點,PB切圓O于點B,點D是圓上的一點,連接AB,AD,BD,CD,PB=BC

1)求證:OP=2OC;

2)若OC=5,sinDCA=,求BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,直線ykx+bk,b為常數(shù))分別與x軸、y軸交于點A(﹣4,0),B0,3),拋物線y=﹣x2+4x+1y軸交于點C,點E在拋物線y=﹣x2+4x+1的對稱軸上移動,點F在直線AB上移動,CE+EF的最小值是( 。

A.2B.4C.2.5D.3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,大圓的弦ABAC分別切小圓于點M、N

1)求證:AB=AC;

2AB8,求圓環(huán)的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,ABC的三個頂點分別為A(-3,4),B(-5,1),C(-12).

1)畫出ABC關于原點對稱的A1B1C1,并寫出點B1的坐標;

2)畫出ABC繞原點逆時針旋轉90°后的A2B2C2,并寫出點B2的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,已知拋物線y=﹣x2+2mxm2+m

1)求拋物線的對稱軸(用含m的式子表示);

2)如果該拋物線的頂點在直線y2x4上,求m的值.

3)點A的坐標為(﹣2,﹣8),點A關于點(0,﹣9)的對稱點為B點.

①寫出點B坐標.

②若該拋物線與線段AB有公共點,結合函數(shù)圖象,直接寫出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用適當?shù)姆椒ń庀铝蟹匠蹋?/span>

(1) (2)2x2+3x—1=0(用配方法解)

(3) (4)(x+1)(x+8)=-2

(5) (6)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB⊙O的直徑,CBD的中點,CE⊥AB,垂足為E,BDCE于點F

1】求證:CF=BF;

2】若AD=2,⊙O的半徑為3,求BC的長

查看答案和解析>>

同步練習冊答案