【題目】某校為選拔一名選手參加美麗邵陽,我為家鄉(xiāng)做代言主題演講比賽,經(jīng)研究,按圖所示的項(xiàng)目和權(quán)數(shù)對(duì)選拔賽參賽選手進(jìn)行考評(píng)(因排版原因統(tǒng)計(jì)圖不完整).下表是李明、張華在選拔賽中的得分情況:

項(xiàng)目

選手

服裝

普通話

主題

演講技巧

李明

85

70

80

85

張華

90

75

75

80

結(jié)合以上信息,回答下列問題:

(1)求服裝項(xiàng)目的權(quán)數(shù)及普通話項(xiàng)目對(duì)應(yīng)扇形的圓心角大小;

(2)求李明在選拔賽中四個(gè)項(xiàng)目所得分?jǐn)?shù)的眾數(shù)和中位數(shù);

(3)根據(jù)你所學(xué)的知識(shí),幫助學(xué)校在李明、張華兩人中選擇一人參加美麗邵陽,我為家鄉(xiāng)做代言主題演講比賽,并說明理由.

【答案】(1)服裝項(xiàng)目的權(quán)數(shù)是10%,普通話項(xiàng)目對(duì)應(yīng)扇形的圓心角是72°;(2)眾數(shù)是85,中位數(shù)是82.5;(3)選擇李明參加美麗邵陽,我為家鄉(xiāng)做代言主題演講比賽,理由見解析.

【解析】1)根據(jù)扇形圖用1減去其它項(xiàng)目的權(quán)重可求得服裝項(xiàng)目的權(quán)重,用360度乘以普通話項(xiàng)目的權(quán)重即可求得普通話項(xiàng)目對(duì)應(yīng)扇形的圓心角大;

(2)根據(jù)統(tǒng)計(jì)表中的數(shù)據(jù)可以求得李明在選拔賽中四個(gè)項(xiàng)目所得分?jǐn)?shù)的眾數(shù)和中位數(shù);

(3)根據(jù)統(tǒng)計(jì)圖和統(tǒng)計(jì)表中的數(shù)據(jù)可以分別計(jì)算出李明和張華的成績(jī),然后比較大小,即可解答本題.

1)服裝項(xiàng)目的權(quán)數(shù)是:1﹣20%﹣30%﹣40%=10%,

普通話項(xiàng)目對(duì)應(yīng)扇形的圓心角是:360°×20%=72°;

(2)明在選拔賽中四個(gè)項(xiàng)目所得分?jǐn)?shù)的眾數(shù)是85,中位數(shù)是:(80+85)÷2=82.5;

(3)李明得分為:85×10%+70×20%+80×30%+85×40%=80.5,

張華得分為:90×10%+75×20%+75×30%+80×40%=78.5,

80.5>78.5,

∴李明的演講成績(jī)好,

故選擇李明參加美麗邵陽,我為家鄉(xiāng)做代言主題演講比賽.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,點(diǎn)IABC的內(nèi)心,∠AIC=124°,點(diǎn)EAD的延長線上,則∠CDE的度數(shù)為( 。

A. 56° B. 62° C. 68° D. 78°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,分別用火柴棍連續(xù)搭建正三角形和正六邊形,公共邊只用一根火柴棍.如果搭建正三角形和正六邊形共用了2018根火柴棍,并且正三角形的個(gè)數(shù)比正六邊形的個(gè)數(shù)多7個(gè),那么能連續(xù)搭建正三角形的個(gè)數(shù)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下列等式:,,,,…,則第8個(gè)等式是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,B、A、F三點(diǎn)在同一直線上,(1)AD∥BC,(2)∠B=∠C,(3)AD平分∠EAC.

請(qǐng)你用其中兩個(gè)作為條件,另一個(gè)作為結(jié)論,構(gòu)造一個(gè)真命題,并證明.

己知:______________________________________________________.

求證:______________________________________________________.

證明:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1所示,在四邊形ABCD中,點(diǎn)O,E,F(xiàn),G分別是AB,BC,CD,AD的中點(diǎn),連接OE,EF,F(xiàn)G,GO,GE.

(1)證明:四邊形OEFG是平行四邊形;

(2)將△OGE繞點(diǎn)O順時(shí)針旋轉(zhuǎn)得到△OMN,如圖2所示,連接GM,EN.

OE=,OG=1,求的值;

試在四邊形ABCD中添加一個(gè)條件,使GM,EN的長在旋轉(zhuǎn)過程中始終相等.(不要求證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,半徑為1的圓心A在拋物線y=(x-3)2-1上,AB//x軸交 于點(diǎn)B(點(diǎn)B在點(diǎn)A的右側(cè)),當(dāng)點(diǎn)A在拋物線上運(yùn)動(dòng)時(shí),點(diǎn)B隨之運(yùn)動(dòng)得到的圖象的函數(shù)表達(dá)式為(

A. y=(x-4)2-1 B. y=(x-3)2 C. y=(x-2)2-1 D. y=(x-3)2-2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,點(diǎn)E在邊AD上,將此矩形沿CE折疊,點(diǎn)D落在點(diǎn)F處,連接BF,B、F、E三點(diǎn)恰好在一直線上.

(1)求證:△BEC為等腰三角形;(2)若AB=2,∠ABE=45°,求矩形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市設(shè)計(jì)的長方形休閑廣場(chǎng)如圖所示,兩端是兩個(gè)半圓形的花壇,中間是一個(gè)直徑為長方形寬度一半的圓形噴水池.

(1)用圖中所標(biāo)字母表示廣場(chǎng)空地(圖中陰影部分)的面積.

(2)若休閑廣場(chǎng)的長為90米,寬為40米,求廣場(chǎng)空地的面積(計(jì)算結(jié)果保留π.

查看答案和解析>>

同步練習(xí)冊(cè)答案