【題目】正方形ABCD邊長為4,M、N分別是BC、CD上的兩個動點,當M點在BC上運動時,保持AM和MN垂直,
(1)證明:Rt△ABM ∽Rt△MCN;
(2)設(shè)BM=x,梯形ABCN的面積為y,求y與x之間的函數(shù)關(guān)系式;當M點運動到什么位置時,四邊形ABCN的面積最大,并求出最大面積;
(3)當M點運動到什么位置時Rt△ABM∽Rt△AMN,求此時x的值.
【答案】(1)證明見解析;(2)當時,四邊形面積最大為10;(3)當點運動到的中點時,,此時.
【解析】
試題(1)、根據(jù)AM⊥MN得出∠CMN+∠AMB= 90°,根據(jù)Rt△ABM得出∠CMN=∠MAB,從而得出三角形相似;(2)、根據(jù)三角形相似得出CN與x的關(guān)系,然后根據(jù)梯形的面積計算法則得出函數(shù)解析式;(3)、根據(jù)要使三角形相似則需要滿足,結(jié)合(1)中的條件得出BM=CM,即M為BC的中點.
試題解析:(1)在正方形ABCD中,AB=BC=CD=4,∠B=∠C =90°,
∵AM⊥MN ∴∠AMN= 90°. ∴∠CMN+∠AMB= 90°.
在Rt△ABM中,∠MAB+∠AMB=90°, ∴∠CMN=∠MAB. ∴Rt△AMN∽Rt△MCN;
(2)∵Rt△ABM∽Rt△MCN, ∴∴∴CN=
∴y===
當x=2時,y取最大值,最大值為10;故當點肘運動到BC的中點時,四邊形ABCN的面積最大,最大面積為10;
(3)∵∠B=∠AMN= 90°, ∴要使Rt△ABM∽Rt△AMN,必須 有
由(1)知∴BM=MC
∴當點M運動到BC的中點時,Rt△ABM∽Rt△AMN,此時x=2
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,一次函數(shù)y=-2x與二次函數(shù)y=ax2+2ax+c的圖像交于A、B兩點(點A在點B的右側(cè)),與其對稱軸交于點C.
(1)求點C的坐標;
(2)設(shè)二次函數(shù)圖像的頂點為D,點C與點D關(guān)于 x軸對稱,且△ACD的面積等于2.
① 求二次函數(shù)的解析式;
② 在該二次函數(shù)圖像的對稱軸上求一點P(寫出其坐標),使△PBC與△ACD相似.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與實踐:某“綜合與實踐”小組開展了“正方體紙盒的制作”實踐活動,他們利用長為,寬為長方形紙板制作出兩種不同方案的正方體盒子, 請你動手操作驗證并完成任務(wù).(紙板厚度及接縫處忽略不計)
動手操作一:
如圖1,若,按如圖1所示的方式先在紙板四角剪去四個同樣大小邊長為的小正方形,再沿虛線折合起來就可以做成一個無蓋的正方體紙盒.
問題解決:(1)此時,你發(fā)現(xiàn)與之間存在的數(shù)量關(guān)系為 .
動手操作二:
如圖2,若,現(xiàn)在在紙板的四角剪去兩個小正方形和兩個小長方形恰好可以制作成一個有蓋的正方體紙盒,其大小與(1)中無蓋正方體大小一樣.
拓展延伸:(2)請你在圖2中畫出你剪去的兩個小正方形和兩個小長方形(用陰影表示),折痕用虛線表示;
(3)此時,你發(fā)現(xiàn)與之間存在的數(shù)量關(guān)系為 ;若,求有蓋正方體紙盒的表面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完成下面的證明
(1)如圖,FG∥CD,∠1=∠3,∠B=50°,求∠BDE的度數(shù).
解:∵FG∥CD(已知)
∴∠2=
又∵∠1=∠3,
∴∠3=∠2(等量代換)
∴BC∥
∴∠B+ =180°
又∵∠B=50°
∴∠BDE= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形OABC中,OA=3,OC=2,F(xiàn)是AB上的一個動點(F不與A,B重合),過點F的反比例函數(shù)y= (x>0)的圖象與BC邊交于點E.
(1)當F為AB的中點時,求該函數(shù)的解析式;
(2)當k為何值時,△EFA的面積最大,最大面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列是某初一數(shù)學(xué)興趣小組探究三角形內(nèi)角和的過程,請根據(jù)他們的探究過程,結(jié)合所學(xué)知識,解答下列問題.興趣小組將圖1△ABC三個內(nèi)角剪拼成圖2,由此得△ABC三個內(nèi)角的和為180度.
(1)請利用圖3證明上述結(jié)論.
(2)三角形的一條邊與另一條邊的反向延長線組成的角,叫做三角形的外角.
如圖4,點D為BC延長線上一點,則∠ACD為△ABC的一個外角.
①請?zhí)骄砍?/span>∠ACD與∠A、∠B的關(guān)系,并直接填空:∠ACD=______.
②如圖5是一個五角星,請利用上述結(jié)論求∠A+∠B+∠C+∠D+∠E的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 交通工程學(xué)理論把在單向道路上行駛的汽車看成連續(xù)的流體,并用流量、速度、密度三個概念描述車流的基本特征,其中流量(輛/小時)指單位時間內(nèi)通過道路指定斷面的車輛數(shù);速度(千米/小時)指通過道路指定斷面的車輛速度,密度(輛/千米)指通過道路指定斷面單位長度內(nèi)的車輛數(shù).
為配合大數(shù)據(jù)治堵行動,測得某路段流量與速度之間關(guān)系的部分數(shù)據(jù)如下表:
速度(千米/小時) | … | 5 | 10 | 20 | 32 | 40 | 48 | … |
流量(輛/小時) | … | 550 | 1000 | 1600 | 1792 | 1600 | 1152 | … |
(1)根據(jù)上表信息,下列三個函數(shù)關(guān)系式中,刻畫,關(guān)系最準確的是____.(只填上正確答案的序號)
①;②;③.
(2)請利用(1)中選取的函數(shù)關(guān)系式分析,當該路段的車流速度為多少時,流量達到最大?最大流量是多少?
(3)已知滿足.請結(jié)合(1)中選取的函數(shù)關(guān)系式繼續(xù)解決下列問題.
①市交通運行監(jiān)控平臺顯示,當時道路出現(xiàn)輕度擁堵.試分析當車流密度在什么范圍時,該路段將出現(xiàn)輕度擁堵;
②在理想狀態(tài)下,假設(shè)前后兩車車頭之間的距離(米)均相等,求流量最大時的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了了解九年級學(xué)生(共450人)的身體素質(zhì)情況,體育老師對九(1)班的50位學(xué)生進行一分鐘跳繩次數(shù)測試,以測試數(shù)據(jù)為樣本,繪制了如下部分頻數(shù)分布表和部分頻數(shù)分布直方圖.
組別 | 次數(shù)x | 頻數(shù)(人數(shù)) |
A | 80≤x<100 | 6 |
B | 100≤x<120 | 8 |
C | 120≤x<140 | m |
D | 140≤x<160 | 18 |
E | 160≤x<180 | 6 |
請結(jié)合圖表解答下列問題:
(1)表中的m=________;
(2)請把頻數(shù)分布直方圖補完整;
(3)這個樣本數(shù)據(jù)的中位數(shù)落在第________組;
(4)若九年級學(xué)生一分鐘跳繩次數(shù)(x)合格要求是x≥120,則估計九年級學(xué)生中一分鐘跳繩成績不合格的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知是最大的負整數(shù),且,,滿足,請回答下列問題.
(1)請直接寫出,,的值.
(2)若為數(shù)軸上一動點,其對應(yīng)的數(shù)為,點在0到1之間運動時(即),請化簡式子:.
(3)若,,在數(shù)軸上據(jù)對應(yīng)的點分別為,,.點,,開始在數(shù)軸上運動,若點以每秒2個單位長度的速度向左運動,同時點和點分別以每秒3個單位長度和每秒8個單位長度的速度向右運動,若點和點之間的距離表示為,點,點之間的距離表示為,設(shè)運動時間為,要使的值不變,請直接寫出此時的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com