【題目】如圖,點(diǎn) O 是等邊ABC 內(nèi)一點(diǎn),AOB=110°,BOCa.將BOC 繞點(diǎn) C 按順時針方向旋轉(zhuǎn) 60°ADC,則ADC≌△BOC,連接 OD

(1)求證:COD 是等邊三角形;

(2)當(dāng)α=120°時,試判斷 AD OC 的位置關(guān)系,并說明理由;

(3)探究:當(dāng) a 為多少度時,AOD 是等腰三角形?

【答案】(1)證明見解析;(2)證明見解析;(3)當(dāng) a 為 125°或 110°或 140°時,△AOD 是等腰三角形.

【解析】

(1)根據(jù)旋轉(zhuǎn)得出CO=CD,∠DCO=60°,根據(jù)等邊三角形的判定推出即可.
(2)求出∠ADO=∠COD=60°,根據(jù)平行線的判定推出即可.
(3)用∠α表示∠ADO、∠AOD、∠DAO,分為三種情況:①∠ADO=∠AOD,②∠ADO=∠OAD,③∠OAD=∠AOD,代入求出即可.

證明:(1)∵△ADC≌△BOC,

COCD

BOC 繞點(diǎn) C 按順時針方向旋轉(zhuǎn) 60°ADC,

∴∠DCO=60°,

∴△COD 是等邊三角形.

(2)解:ADOC,

理由是:∵△DOC 是等邊三角形,

∴∠CDO=∠DOC=60°,

∵∠α=120°,△COB≌△CDA

∴∠ADC=∠COB=120°,

∴∠ADO=120°﹣60°=60°,

∴∠ADO=∠DOC=60°,

ADOC

(3)解:AOD=360°﹣∠AOB﹣∠α﹣∠COD=360°﹣110°﹣∠α﹣60°=190°﹣∠α,∠ADO=∠ADC﹣∠CDO=∠α﹣60°,∠OAD=180°﹣∠AOD﹣∠ADO=180°﹣(∠α﹣60°)﹣(190°﹣∠α)=50°, ADO=∠AOD,即∠α﹣60°=190°﹣∠α,

解得:∠α=125°;

ADO=∠OAD,則∠α﹣60°=50°, 解得:∠α=110°;

OAD=∠AOD,即 50°=190°﹣∠α, 解得:∠α=140°;

即當(dāng) a 125° 110° 140°時,AOD 是等腰三角形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,AB=10,BC、CD、DA是⊙O的弦,且BC=CD=DA,若點(diǎn)P是直徑AB上的一動點(diǎn),則PD+PC的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一副三角尺按圖1擺放,等腰直角三角尺的直角邊DF恰好垂直平分AB,與AC相交于點(diǎn)G,

(1)求GC的長;

(2)如圖2,將△DEF繞點(diǎn)D順時針旋轉(zhuǎn),使直角邊DF經(jīng)過點(diǎn)C,另一直角邊DE與AC相交于點(diǎn)H,分別過H、C作AB的垂線,垂足分別為M、N,通過觀察,猜想MD與ND的數(shù)量關(guān)系,并驗(yàn)證你的猜想.

(3)在(2)的條件下,將△DEF沿DB方向平移得到△D′E′F′,當(dāng)D′E′恰好經(jīng)過(1)中的點(diǎn)G時,請直接寫出DD′的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABCRtADE,∠BAC=∠DAE=90°,ABDE相交于點(diǎn)F,連接DB、CE

(1)AFD的度數(shù);

(2)ADE=∠ABC,求證ADBAEC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,小明將一張長為4、寬為3的矩形紙片沿對角線剪開,得到兩張三角形紙片(如圖2),將這兩張三角紙片擺成如圖3的形狀,但點(diǎn)B、CF、D在同一條直線上,且點(diǎn)C與點(diǎn)F重合(在圖3至圖6中統(tǒng)一用點(diǎn)F表示).

小明在對這兩張三角形紙片進(jìn)行如下操作時遇到了三個問題,請你幫助解決.

1)將圖3中的ABF沿BD向右平移到圖4的位置,其中點(diǎn)B與點(diǎn)F 重合,請你求出平移的距離 ;

2在圖5中若∠GFD60°,則圖3中的ABF繞點(diǎn) 方向旋轉(zhuǎn) 到圖5的位置;

3)將圖3中的ABF沿直線AF翻折到圖6的位置,AB1DE于點(diǎn)H,試問:AEHHB1D的面積大小關(guān)系.說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著人們生活水平的提高,短途旅行日趨火爆.我市某旅行社推出遼陽葫蘆島海濱觀光一日游項(xiàng)目,團(tuán)隊(duì)人均報名費(fèi)用y(元)與團(tuán)隊(duì)報名人數(shù)x(人)之間的函數(shù)關(guān)系如圖所示,旅行社規(guī)定團(tuán)隊(duì)人均報名費(fèi)用不能低于88.旅行社收到的團(tuán)隊(duì)總報名費(fèi)用為w(元).

(1)直接寫出當(dāng)x≥20時,yx之間的函數(shù)關(guān)系式及自變量x的取值范圍;

(2)兒童節(jié)當(dāng)天旅行社收到某個團(tuán)隊(duì)的總報名費(fèi)為3000元,報名旅游的人數(shù)是多少?

(3)當(dāng)一個團(tuán)隊(duì)有多少人報名時,旅行社收到的總報名費(fèi)最多?最多總報名費(fèi)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店購進(jìn)一種商品,每件商品進(jìn)價30元試銷中發(fā)現(xiàn)這種商品每天的銷售量y(件)

與每件銷售價x(元)的關(guān)系數(shù)據(jù)如下:

x

30

32

34

36

y

40

36

32

28

(1)已知y與x滿足一次函數(shù)關(guān)系,根據(jù)上表,求出y與x之間的關(guān)系式(不寫出自變量x的取值范圍);

(2)如果商店銷售這種商品,每天要獲得150元利潤,那么每件商品的銷售價應(yīng)定為多少元?

(3)設(shè)該商店每天銷售這種商品所獲利潤為w(元),求出w與x之間的關(guān)系式,并求出每件商品銷售價定為多少元時利潤最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)x軸最多有一個交點(diǎn),現(xiàn)有以下三個結(jié)論:①該拋物線的對稱軸在y軸左側(cè);②關(guān)于x的方程無實(shí)數(shù)根;③≥0.其中,正確結(jié)論的個數(shù)為(  )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y1=﹣x+2的圖象與反比例函數(shù)的圖象交于點(diǎn)A(﹣1,m),點(diǎn)B(n,﹣1).

(1)求反比例函數(shù)的解析式;

(2)當(dāng)y1y時,直接寫出x的取值范圍;

(3)求△AOB的面積

查看答案和解析>>

同步練習(xí)冊答案