【題目】如圖1.平面直角坐標系為原點,長方形的頂點在坐標軸上,點,,且己知是64的立方根,.
(1)求點的坐標;
(2)如圖1,有兩動點點從點出發(fā)沿軸負方向以1個單位長度每秒的速度勻速移動,點從點出發(fā)以2個單位長度每秒的速度沿的路線勻速移動,點到達點整個運動隨之結(jié)束.若長方形對角線的交點的坐標是,設(shè)運動時間為秒,問:以為頂點的多邊形面積是否為定值,若是,請求出此多邊形的面積;若不是,請說明理由.
(3)如圖2,是線段上一點,使,點是線段上任意一點(不與點重合),連接交于點.已知,求的值.
【答案】(1),;(2),以為頂點的多邊形面積為定值,值為2;(3)
【解析】
(1)根據(jù)是64的立方根,,求得a和b的值即可;
(2)當0<t<2時;當t=2時;當2<t<3時,當t=3時,求出多邊形的面積,即可證明;
(3))設(shè),,用x和y表示出∠EOC,∠OEC,∠OGC,∠OAC,代入中,即可求值.
解:(1)∵是64的立方根,,
∴a=4,b=2,
∴,;
(2)以為頂點的多邊形面積為定值.理由如下:
①當時,
,
②當時,
,
③當時,
,
④當時,
,
綜上所述,以為頂點的多邊形面積為定值,值為2.
(3)設(shè),,
∴,
在△AEC中,,
在△OCG中,,
在△AOC中,,
原式.
科目:初中數(shù)學 來源: 題型:
【題目】(8分)某中學初二年級抽取部分學生進行跳繩測試.并規(guī)定:每分鐘跳90次以下的為不及格;每分鐘跳90~99次的為及格;每分鐘跳100~109次的為中等;每分鐘跳110~119次的為良好;每分鐘跳120次及以上的為優(yōu)秀.測試結(jié)果整理繪制成如下兩幅不完整的統(tǒng)計圖.請根據(jù)圖中信息,解答下列各題:
(1)參加這次跳繩測試的共有 人;
(2)補全條形統(tǒng)計圖;
(3)在扇形統(tǒng)計圖中,“中等”部分所對應(yīng)的圓心角的度數(shù)是 ;
(4)如果該校初二年級的總?cè)藬?shù)是480人,根據(jù)此統(tǒng)計數(shù)據(jù),請你估算該校初二年級跳繩成績?yōu)?/span>“優(yōu)秀”的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將長為,寬為的長方形白紙,,按圖所示的方法粘合起來,粘合部分的寬為厘米.
(1)根據(jù)題意,將表格補充完整.
白紙張數(shù) | …… | |||||
紙條長度 | _______ | _______ | …… |
(2)設(shè)張白紙粘合后的總長度為厘米,寫出與之間的關(guān)系式;并求出張白紙粘合后的總長度.
(3)若粘合后的總長度為,問需要多少張白紙?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形的邊長為, 、、分別是、、上的動點,且.
()求證:四邊形是正方形.
()判斷直線是否經(jīng)過某一定點,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,A,B分別在射線OA,ON上,且∠MON為鈍角,現(xiàn)以線段OA,OB為斜邊向∠MON的外側(cè)作等腰直角三角形,分別是△OAP,△OBQ,點C,D,E分別是OA,OB,AB的中點.
(1)求證:△PCE≌△EDQ;
(2)延長PC,QD交于點R.如圖2,若∠MON=150°,求證:△ABR為等邊三角形;
(3)如圖3,若△ARB∽△PEQ,求∠MON大小
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,點D、E、F分別是邊AB、AC、BC的中點,要判定四邊形DBFE是菱形,下列所添加條件不正確的是( )
A. AB=AC B. AB=BC C. BE平分∠ABC D. EF=CF
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖∠1=∠2,∠3=∠4,∠5=∠6,∠1=60°,∠7=20°
(1)試說明AC⊥BD
(2)求∠3及∠5的度數(shù)
(3)求四邊形ABCD各內(nèi)角的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,∠B的平分線BE與AD交于點E,∠BED的平分線EF與DC交于點F,若AB=9,DF=2FC,則BC= . (結(jié)果保留根號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com