如圖,直線與x軸、y軸分別交于A、B,以線段AB為直角邊在第一象限內(nèi)作等腰直角△ABC,∠BAC=90°.在第二象限內(nèi)有一點,且△ABP的面積與△ABC的面積相等.則△ABC的面積是    ;a=   
【答案】分析:根據(jù)題意,易得A、B點的坐標,可得AB的長,又有△ABC是等腰直角三角形,進而可得△ABC的面積,已知△ABP的面積與△ABC的面積相等,即P到直線AB的距離與AC長度相等,列出關系式可得P的坐標,進而可得a的值.
解答:解:根據(jù)題意,直線與x軸、y軸分別交于A、B,
則A(,0),B(0,1),
即OA=,OB=1,則AB=2;
又有△ABC是等腰直角三角形,即AB=AC=2,∠BAC=90°,
則S△ABC=×AB×AC=2;
同時又有△ABP的面積與△ABC的面積相等,
則即P到直線AB的距離與AC長度相等,即到AB的距離為2,
可得:||=2,
解可得||=2,
=2或=-2,

解得:a=±4,P在第二象限,
故a=-4;
故答案為2,-4.
點評:本題有一定難度,需要認真分析題意,結合兩點間的距離、點到直線的距離進行解題.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,直線與x軸、y軸分別交于A、B兩點.
(1)將直線AB繞原點O沿逆時針方向旋轉90°得到直線A1B1
請在《答題卡》所給的圖中畫出直線A1B1,此時直線AB與A1B1的位置關系為
 
(填“平行”或“垂直”);
(2)設(1)中的直線AB的函數(shù)表達式為y1=k1x+b1,直線A1B1的函數(shù)表達式為y2=k2x+b2,則k1•k2=
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,直線與x軸、y軸交于A、B兩點,且OA=OB=1,點P是反比例函數(shù)y=
1
2x
圖象在第一象限的分支上的任意一點,P點坐標為(a,b),由點P分別向x軸,y軸作垂線PM、PN,垂足分別為M、N;PM、PN分別與直線交于點E,點F.
(1)設交點E、F都在線段AB上,分別求出點E、點F的坐標;(用含a的代數(shù)式表示)
(2)△AOF與△BOE是否一定相似?如果一定相似,請予以證明;如果不一定相似或一定不相似,請簡短說明理由;
(3)當點P在曲線上移動時,△OEF隨之變動,指出在△OEF的三個內(nèi)角中,大小始終保持不變的那個角和它的大小,并證明你的結論;
(4)在雙曲線y=
1
2x
上是否存在點P,使點P到直線AB的距離最短的點,若存在,請求出點P的坐標及最短距離;若不存在,說明理由
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

3、如圖,直線與y軸的交點是(0,-3),則當x<0時,( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,直線與x軸、y軸分別交于A、B兩點.
(1)將直線AB繞原點O沿逆時針方向旋轉90°得到直線A1B1.請在《答題卡》所給的圖中畫出直線A1B1,此時直線AB與A1B1的位置關系為
垂直
垂直
(填“平行”或“垂直”)
(2)設(1)中的直線AB的函數(shù)表達式為y1=k1x+b1,直線A1B1的函數(shù)表達式為y2=k2x+b2,則k1•k2=
-1
-1

查看答案和解析>>

科目:初中數(shù)學 來源:2011屆寧夏銀川市初三上學期期末數(shù)學卷 題型:解答題

如圖①,直線與x軸、y軸分別交于B、C兩點,點A在x軸負半軸上,且,拋物線經(jīng)過A、B、C三點,D為線段AB中點,點P(m,n)是該拋物線上的一個動點(其中m>0,n<0),連接DP交BC于點E.

(1)寫出A、B、C三點的坐標,并求拋物線的解析式;(5分)
(2) 當△BDE是等腰三角形時,直接寫出此時點E的坐標;(3分)
(3)連結PC、PB,△PBC是否有最大面積?若有,求出△PBC的最大面積和此時P點的坐標;若沒有,請說明理由。(3分)

查看答案和解析>>

同步練習冊答案