【題目】已知一拋物線與x軸的交點(diǎn)是A(﹣2,0),B(1,0),且經(jīng)過點(diǎn)C(2,8).
(1)求該拋物線的解析式,并寫出頂點(diǎn)坐標(biāo).
(2)直接寫出當(dāng)y>8時(shí),x的取值范圍.
【答案】(1)(﹣,﹣);(2)當(dāng)y>8時(shí),x的取值范圍是x<﹣3或x>2.
【解析】
(1)設(shè)交點(diǎn)式y=a(x+2)(x-1),然后把C點(diǎn)坐標(biāo)代入求出a的值即可得到拋物線解析式,把解析式配成頂點(diǎn)式即可得到拋物線頂點(diǎn)坐標(biāo);
(2)先求出點(diǎn)C(2,8)關(guān)于對(duì)稱軸x=-的對(duì)稱點(diǎn)為(-3,8),再根據(jù)二次函數(shù)的性質(zhì)即可求解.
(1)折拋物線解析式為y=a(x+2)(x﹣1),
把C(2,8)代入得a41=8,解得a=2,
所以拋物線解析式為y=2(x+2)(x﹣1),
即y=2x2+2x﹣4=2x2+2x﹣4=2(x+)2﹣,
所以拋物線的頂點(diǎn)坐標(biāo)為(﹣,﹣);
(2)∵y=2x2+2x﹣4=2(x+)2﹣,
∴對(duì)稱軸是直線x=﹣a=2>0開口向上,
∴點(diǎn)C(2,8)關(guān)于對(duì)稱軸的對(duì)稱點(diǎn)為(﹣3,8),
∴當(dāng)y>8時(shí),x的取值范圍是x<﹣3或x>2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,BC=2AB,點(diǎn)E、F分別是BC、AD的中點(diǎn),AE、BF交于點(diǎn)O,連接EF,OC.
(1)求證:四邊形ABEF是菱形;
(2)若AB=4,∠ABC=60°,求OC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】等腰△ABC中,AB=AC,∠A=36°,D是AC上的一點(diǎn),AD=BD,則以下結(jié)論中正確的有( 。
①△BCD是等腰三角形;②點(diǎn)D是線段AC的黃金分割點(diǎn);③△BCD∽△ABC;④BD平分∠ABC.
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與y軸的交點(diǎn)為A,直線與直線的交點(diǎn)M的坐標(biāo)為.
(1)求a和k的值;
(2)直接寫出關(guān)于x的不等式的解集;
(3)若點(diǎn)B在x軸上,,直接寫出點(diǎn)B的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在等腰直角三角形中,,點(diǎn)在邊上,連接,連接
(1)求證:
(2)點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)為,連接
①補(bǔ)全圖形并證明
②利用備用圖進(jìn)行畫圖、試驗(yàn)、探究,找出當(dāng)三點(diǎn)恰好共線時(shí)點(diǎn)的位置,請(qǐng)直接寫出此時(shí)的度數(shù),并畫出相應(yīng)的圖形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明家準(zhǔn)備給邊長(zhǎng)為6m的正方形客廳用黑色和白色兩種瓷磚鋪設(shè),如圖所示:①黑色瓷磚區(qū)域Ⅰ:位于四個(gè)角的邊長(zhǎng)相同的小正方形及寬度相等的回字型邊框(陰影部分),②白色瓷磚區(qū)域Ⅱ:四個(gè)全等的長(zhǎng)方形及客廳中心的正方形(空白部分).設(shè)四個(gè)角上的小正方形的邊長(zhǎng)為x(m).
(1)當(dāng)x=0.8時(shí),若客廳中心的正方形瓷磚鋪設(shè)的面積為16m2,求回字型黑色邊框的寬度;
(2)若客廳中心的正方形邊長(zhǎng)為4m,白色瓷磚區(qū)域Ⅱ的總面積為26m2,求x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC 中,AE、BF 是角平分線,交于 O 點(diǎn).
(1)如圖 1,AD 是高,∠BAC=90°,∠C=70°,求∠DAC 和∠BOA 的度數(shù);
(2)如圖 2,若 OE=OF,求∠C 的度數(shù);
(3)如圖 3,若∠C=90°,BC=8,AC=6,S△CEF=4,求 S△AOB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某數(shù)學(xué)興趣小組同學(xué)進(jìn)行測(cè)量大樹CD高度的綜合實(shí)踐活動(dòng),如圖,在點(diǎn)A處測(cè)得直立于地面的大樹頂端C的仰角為36°,然后沿在同一剖面的斜坡AB行走13米至坡頂B處,然后再沿水平方向行走6米至大樹腳底點(diǎn)D處,斜面AB的坡度(或坡比)i=1:2.4,那么大樹CD的高度約為( )(參考數(shù)據(jù):sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)
A. 8.1米 B. 17.2米 C. 19.7米 D. 25.5米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)場(chǎng)學(xué)習(xí)題:
問題背景:
在△ABC中,AB、BC、AC三邊的長(zhǎng)分別為、、,求這個(gè)三角形的面積.
小輝同學(xué)在解答這道題時(shí),先建立一個(gè)正方形網(wǎng)格(每個(gè)小正方形的邊長(zhǎng)為1),再在網(wǎng)格中畫出格點(diǎn)△ABC(即△ABC三個(gè)頂點(diǎn)都在小正方形的頂點(diǎn)處),如圖1所示,這樣不需求△ABC的高,而借用網(wǎng)格就能計(jì)算出它的面積.
(1)請(qǐng)你將△ABC的面積直接填寫在橫線上. .
思維拓展:
(2)我們把上述求△ABC面積的方法叫做構(gòu)圖法,若△ABC三邊的長(zhǎng)分別為a,2a、a(a>0),請(qǐng)利用圖2的正方形網(wǎng)格(每個(gè)小正方形的邊長(zhǎng)為a)畫出相應(yīng)的△ABC,并求出它的面積是: .
探索創(chuàng)新:
(3)若△ABC三邊的長(zhǎng)分別為、、(m>0,n>0,m≠n),請(qǐng)運(yùn)用構(gòu)圖法在圖3指定區(qū)域內(nèi)畫出示意圖,并求出△ABC的面積為: .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com